On a complex manifold (M,J), we interpret complex symplectic and pseudo-Kähler structures as symplectic forms with respect to which J is, respectively, symmetric and skew-symmetric. We classify complex symplectic structures on 4-dimensional Lie algebras. We develop a method for constructing hypersymplectic structures from the above data. This allows us to obtain two families of hypersymplectic structures on a 4-step nilmanifold.
Symmetric and skew-symmetric complex structures
Bazzoni G.
;
2021-01-01
Abstract
On a complex manifold (M,J), we interpret complex symplectic and pseudo-Kähler structures as symplectic forms with respect to which J is, respectively, symmetric and skew-symmetric. We classify complex symplectic structures on 4-dimensional Lie algebras. We develop a method for constructing hypersymplectic structures from the above data. This allows us to obtain two families of hypersymplectic structures on a 4-step nilmanifold.File | Dimensione | Formato | |
---|---|---|---|
Bazzoni, Gil-García, Latorre -Symmetric and skew-symmetric complex structures.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
406.06 kB
Formato
Adobe PDF
|
406.06 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.