In spite of being a process that exploits a renewable source of energy, the combustion of wood-based biomass contributes to deteriorate outdoor and indoor air quality. Critical situations for human exposure may occur in mountainous areas, where wood-based biomass is usually abundant and the complex morphology may favour the stagnation of air pollutants in valleys. Replacing wood/pellet stoves with centralised systems would reduce the impact, but the construction of district heating systems may not be convenient in areas with low density of houses. A possible solution could rely on direct electrical heating (DEH) systems, preferably fed by thermochemical processes that help achieve environmental goals for the local community, like the reduction of waste landfilling and the valorisation of the energy content of waste. This paper aims at presenting a comparison between the impacts expected by household wood/pellet stoves and by a modern waste-to-energy (WtE) plant, in terms of emissions of air pollutants into the atmosphere, when replacing wood stoves with a DEH system fed by the electric energy generated by the WtE plant. The comparison shows that the replacement of household stoves with an equivalent DEH system would be beneficial in terms of impacts on the local air quality. Such an approach could be considered to reduce the health impacts from biomass burning in critical areas like the Alpine region.

Potentials of the waste-to-energy sector for an unconventional district heating system

Rada E. C.
2019-01-01

Abstract

In spite of being a process that exploits a renewable source of energy, the combustion of wood-based biomass contributes to deteriorate outdoor and indoor air quality. Critical situations for human exposure may occur in mountainous areas, where wood-based biomass is usually abundant and the complex morphology may favour the stagnation of air pollutants in valleys. Replacing wood/pellet stoves with centralised systems would reduce the impact, but the construction of district heating systems may not be convenient in areas with low density of houses. A possible solution could rely on direct electrical heating (DEH) systems, preferably fed by thermochemical processes that help achieve environmental goals for the local community, like the reduction of waste landfilling and the valorisation of the energy content of waste. This paper aims at presenting a comparison between the impacts expected by household wood/pellet stoves and by a modern waste-to-energy (WtE) plant, in terms of emissions of air pollutants into the atmosphere, when replacing wood stoves with a DEH system fed by the electric energy generated by the WtE plant. The comparison shows that the replacement of household stoves with an equivalent DEH system would be beneficial in terms of impacts on the local air quality. Such an approach could be considered to reduce the health impacts from biomass burning in critical areas like the Alpine region.
2019
WIT Transactions on Ecology and the Environment
Energy and Sustainability 2019
Coimbra
3rd July-5th July 2019
File in questo prodotto:
File Dimensione Formato  
2019_Potentials ofthe waste-to-energy sector for an unconventional district heating system.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 1.05 MB
Formato Adobe PDF
1.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2127220
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact