A typical issue in Pattern Recognition is the nonuniformly sampled data, which modifies the general performance and capability of machine learning algorithms to make accurate predictions. Generally, the data is considered non-uniformly sampled when in a specific area of data space, they are not enough, leading us to misclassification problems. This issue cut down the goal of the one-class classifiers decreasing their performance. In this paper, we propose a one-class classifier based on the minimum spanning tree with a dynamic decision boundary (OCdmst) to make good prediction also in the case we have non-uniformly sampled data. To prove the effectiveness and robustness of our approach we compare with the most recent one-class classifier reaching the state-of-the-art in most of them. The code and all results are available online https://gitlab.com/artelabsuper/ocdmst.
Dynamic Decision Boundary for One-class Classifiers applied to non-uniformly Sampled Data
LA Grassa R.;Gallo I.;Landro N.
2020-01-01
Abstract
A typical issue in Pattern Recognition is the nonuniformly sampled data, which modifies the general performance and capability of machine learning algorithms to make accurate predictions. Generally, the data is considered non-uniformly sampled when in a specific area of data space, they are not enough, leading us to misclassification problems. This issue cut down the goal of the one-class classifiers decreasing their performance. In this paper, we propose a one-class classifier based on the minimum spanning tree with a dynamic decision boundary (OCdmst) to make good prediction also in the case we have non-uniformly sampled data. To prove the effectiveness and robustness of our approach we compare with the most recent one-class classifier reaching the state-of-the-art in most of them. The code and all results are available online https://gitlab.com/artelabsuper/ocdmst.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.