In this work we explore the interaction of HS- with a family of fluorescent zinc complexes. In particular we selected a family of complexes with N,O-bidentate ligands aiming at assessing whether the zinc-chelating ligand plays a role in influencing the reactivity of HS- with the complexes under investigation. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes included in this study. The results highlight the potential of the devised systems to be used as HS-/H2S fluorescent sensors via a coordinative-based approach. To shed light on the species formed in solution when HS-/H2S interacts with the title complexes and aiming to rationalize the photophysical properties of the sensing constructs, we performed a computational analysis based on the time dependent density functional theory (TD-DFT). Preliminary bio-imaging experiments were also performed and the results indicate the potential of this class of compounds as probes for the detection of H2S in living cells.
Imidazo-pyridine-based zinc(ii) complexes as fluorescent hydrogen sulfide probes
Brenna S.;Attilio Ardizzoia G.;
2021-01-01
Abstract
In this work we explore the interaction of HS- with a family of fluorescent zinc complexes. In particular we selected a family of complexes with N,O-bidentate ligands aiming at assessing whether the zinc-chelating ligand plays a role in influencing the reactivity of HS- with the complexes under investigation. Different experiments, performed by diverse spectroscopic techniques, provide evidence that HS- binds the zinc center of all the complexes included in this study. The results highlight the potential of the devised systems to be used as HS-/H2S fluorescent sensors via a coordinative-based approach. To shed light on the species formed in solution when HS-/H2S interacts with the title complexes and aiming to rationalize the photophysical properties of the sensing constructs, we performed a computational analysis based on the time dependent density functional theory (TD-DFT). Preliminary bio-imaging experiments were also performed and the results indicate the potential of this class of compounds as probes for the detection of H2S in living cells.File | Dimensione | Formato | |
---|---|---|---|
41- Dalton 2021_Strianese.pdf
non disponibili
Descrizione: Main text
Tipologia:
Versione Editoriale (PDF)
Licenza:
DRM non definito
Dimensione
2.76 MB
Formato
Adobe PDF
|
2.76 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.