For a prime number p, the author shows that if two certain canonical finite quotients of a finitely generated Bloch–Kato pro-p group G coincide, then G has a very simple structure, i.e., G is a p-adic analytic pro-p group (see Theorem 1). This result has a remarkable Galois-theoretic consequence: if the two corresponding canonical finite extensions of a field F—with F containing a primitive p-th root of unity—coincide, then F is p-rigid (see Corollary 1). The proof relies only on group-theoretic tools, and on certain properties of Bloch–Kato pro-p groups.

Finite quotients of Galois pro- p groups and rigid fields

QUADRELLI, CLAUDIO
2015-01-01

Abstract

For a prime number p, the author shows that if two certain canonical finite quotients of a finitely generated Bloch–Kato pro-p group G coincide, then G has a very simple structure, i.e., G is a p-adic analytic pro-p group (see Theorem 1). This result has a remarkable Galois-theoretic consequence: if the two corresponding canonical finite extensions of a field F—with F containing a primitive p-th root of unity—coincide, then F is p-rigid (see Corollary 1). The proof relies only on group-theoretic tools, and on certain properties of Bloch–Kato pro-p groups.
2015
2015
Pro-p groups; Zassenhaus filtration; Absolute Galois groups; p-rigid fields
Quadrelli, Claudio
File in questo prodotto:
File Dimensione Formato  
quotients.pdf

non disponibili

Tipologia: Documento in Post-print
Licenza: DRM non definito
Dimensione 285.02 kB
Formato Adobe PDF
285.02 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2129368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact