A convex polyomino P is L-convex if any two cells of P can be joined by a monotone path inside P with at most one change of direction. In this paper we show that the problem of computing the number of L-convex polyominoes of area n can be solved in polynomial time using O(n^4) space. We designed a C++ program to significantly extend the counting sequence of L-convex polyominoes and to improve the estimate of the associated growth constant.

On Counting L-Convex Polyominoes

Dorigatti V.;Massazza P.
2021-01-01

Abstract

A convex polyomino P is L-convex if any two cells of P can be joined by a monotone path inside P with at most one change of direction. In this paper we show that the problem of computing the number of L-convex polyominoes of area n can be solved in polynomial time using O(n^4) space. We designed a C++ program to significantly extend the counting sequence of L-convex polyominoes and to improve the estimate of the associated growth constant.
2021
CEUR Workshop Proceedings
22nd Italian Conference on Theoretical Computer Science, ICTCS 2021
Bologna
13-15 settembre 2021
File in questo prodotto:
File Dimensione Formato  
ICTCS2021DoMa.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 577.41 kB
Formato Adobe PDF
577.41 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2132548
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact