The present study aimed to investigate the growth performance, whole-body proximate composition, and intestinal microbiome of rainbow trout strains when selected and non-selected for weight gain on all-plant protein diets. A 2x2 factorial design was applied, where a selected (United States) and a non-selected (ITA) rainbow trout strain were fed using either an all-plant protein (PP) or a commercial low-FM diet (C). Diets were fed to five replicates of 20 (PP) or 25 (C) fish for 105 days. At the end of the trial, growth parameters were assessed, and whole fish (15 pools of three fish/diet) and gut samples (six fish/diet) were collected for whole-body proximate composition and gut microbiome analyses, respectively. Independent of the administered diet, the United States strain showed higher survival, final body weight, weight gain, and specific growth rate when compared to the ITA fish (p < 0.001). Furthermore, decreased whole-body ether extract content was identified in the PP-fed United States rainbow trout when compared to the ITA strain fed the same diet (p < 0.001). Gut microbiome analysis revealed the Cetobacterium probiotic-like genus as clearly associated with the United States rainbow trout, along with the up-regulation of the pathway involved in starch and sucrose metabolism. In summary, the overall improvement in growth performance and, to a lesser extent, whole-body proximate composition observed in the selected rainbow trout strain was accompanied by specific, positive modulation of the intestinal microbiome.

Efficacy of utilization of all-plant-based and commercial low-fishmeal feeds in two divergently selected strains of rainbow trout (Oncorhynchus mykiss): focus on growth performance, whole-body proximate composition, and intestinal microbiome.

Rimoldi S;Terova G.
2022-01-01

Abstract

The present study aimed to investigate the growth performance, whole-body proximate composition, and intestinal microbiome of rainbow trout strains when selected and non-selected for weight gain on all-plant protein diets. A 2x2 factorial design was applied, where a selected (United States) and a non-selected (ITA) rainbow trout strain were fed using either an all-plant protein (PP) or a commercial low-FM diet (C). Diets were fed to five replicates of 20 (PP) or 25 (C) fish for 105 days. At the end of the trial, growth parameters were assessed, and whole fish (15 pools of three fish/diet) and gut samples (six fish/diet) were collected for whole-body proximate composition and gut microbiome analyses, respectively. Independent of the administered diet, the United States strain showed higher survival, final body weight, weight gain, and specific growth rate when compared to the ITA fish (p < 0.001). Furthermore, decreased whole-body ether extract content was identified in the PP-fed United States rainbow trout when compared to the ITA strain fed the same diet (p < 0.001). Gut microbiome analysis revealed the Cetobacterium probiotic-like genus as clearly associated with the United States rainbow trout, along with the up-regulation of the pathway involved in starch and sucrose metabolism. In summary, the overall improvement in growth performance and, to a lesser extent, whole-body proximate composition observed in the selected rainbow trout strain was accompanied by specific, positive modulation of the intestinal microbiome.
2022
2022
https://doi.org/10.3389/fphys.2022.892550
rainbow trout, selective breeding, performance, vegetable proteins, gut microbiome
Biasato, I; Rimoldi, S; Caimi, C; Bellezza Oddon Chemello, G.; Prearo, M; Saroglia, M; Hardy, R; Gasco, L; Terova, G.
File in questo prodotto:
File Dimensione Formato  
Frontiers in Physiology, Biasato, 2022_Trote americane_Open Access.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.49 MB
Formato Adobe PDF
1.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2133164
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact