In this paper, we define and study q-statistical limit point, q-statistical cluster point, q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. We establish rela-tionships of q-statistical convergence with q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. Further, we apply q-statistical convergence to prove a Korovkin type approximation theorem.
Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem
Mursaleen M. A.;Serra-Capizzano S.
2022-01-01
Abstract
In this paper, we define and study q-statistical limit point, q-statistical cluster point, q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. We establish rela-tionships of q-statistical convergence with q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. Further, we apply q-statistical convergence to prove a Korovkin type approximation theorem.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.