In this paper, we define and study q-statistical limit point, q-statistical cluster point, q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. We establish rela-tionships of q-statistical convergence with q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. Further, we apply q-statistical convergence to prove a Korovkin type approximation theorem.

Statistical Convergence via q-Calculus and a Korovkin’s Type Approximation Theorem

Mursaleen M. A.;Serra-Capizzano S.
2022-01-01

Abstract

In this paper, we define and study q-statistical limit point, q-statistical cluster point, q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. We establish rela-tionships of q-statistical convergence with q-statistically Cauchy, q-strongly Cesàro and statistically Cq1-summable sequences. Further, we apply q-statistical convergence to prove a Korovkin type approximation theorem.
2022
Korovkin type approximation theorem; Q-Cesàro matrix; Q-integers; Q-statistical cluster point; Q-statistical convergence; Q-statistical limit point; Q-statistically Cauchy; Statistical convergence
Mursaleen, M. A.; Serra-Capizzano, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2134588
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 30
social impact