PURPOSE: To compare the accuracy of 6 desktop 3D printers in dentistry. METHODS: A parallelepiped (PP) with known geometry and holes of different diameters was designed and printed with 6 desktop 3D printers (Sheraprint 40®; Solflex 350®; Form 2®; MoonRay D75®; Vida HD®; XFAB 2000®). For each printer, 9 PPs were printed with proprietary materials; these PPs were not cured and underwent dimensional analysis by optical microscopy and precision probing. A file representative of a dentate model (DM) was also printed with the aforementioned printers. For each printer, 3 DMs were printed with the proprietary materials. These DMs were cured and after 1 month, scanned with a desktop scanner and superimposed on the virtual reference model, to investigate trueness. RESULTS: Dimensional analysis by optical microscopy and precision probing highlighted the reliability of the 3D printed models; errors were compatible with clinical use. However, both linear and diameter measurements revealed statistically significant differences between the machines. The trueness of the DMs 1 month after printing was low, suggesting that they underwent dimensional contraction over time, albeit with differences between the printers. CONCLUSIONS: The 3D printed models showed acceptable accuracy, although statistically significant differences were found among them.
Accuracy of 6 Desktop 3D Printers in Dentistry: A Comparative In Vitro Study
Mangano F. G.
Conceptualization
;Farronato D.Supervision
;
2020-01-01
Abstract
PURPOSE: To compare the accuracy of 6 desktop 3D printers in dentistry. METHODS: A parallelepiped (PP) with known geometry and holes of different diameters was designed and printed with 6 desktop 3D printers (Sheraprint 40®; Solflex 350®; Form 2®; MoonRay D75®; Vida HD®; XFAB 2000®). For each printer, 9 PPs were printed with proprietary materials; these PPs were not cured and underwent dimensional analysis by optical microscopy and precision probing. A file representative of a dentate model (DM) was also printed with the aforementioned printers. For each printer, 3 DMs were printed with the proprietary materials. These DMs were cured and after 1 month, scanned with a desktop scanner and superimposed on the virtual reference model, to investigate trueness. RESULTS: Dimensional analysis by optical microscopy and precision probing highlighted the reliability of the 3D printed models; errors were compatible with clinical use. However, both linear and diameter measurements revealed statistically significant differences between the machines. The trueness of the DMs 1 month after printing was low, suggesting that they underwent dimensional contraction over time, albeit with differences between the printers. CONCLUSIONS: The 3D printed models showed acceptable accuracy, although statistically significant differences were found among them.File | Dimensione | Formato | |
---|---|---|---|
110 Accuracy of EJPRD 2020.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
2.26 MB
Formato
Adobe PDF
|
2.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.