Aims: Parkinson’s disease and related disorders are devastating neurodegenerative pathologies. Since α-synuclein was identified as a main component of Lewy bodies and neurites, efforts have been made to clarify the pathogenic mechanisms of α-synuclein's detrimental effects. α-synuclein oligomers are the most harmful species and may recruit and activate glial cells. Inflammation is emerging as a bridge between genetic susceptibility and environmental factors co-fostering Parkinson’s disease. However, direct evidence linking inflammation to the harmful activities of α-synuclein oligomers or to the Parkinson’s disease behavioural phenotype is lacking. Methods: To clarify whether neuroinflammation influences Parkinson’s disease pathogenesis, we developed: (i) a ‘double-hit’ approach in C57BL/6 naive mice where peripherally administered lipopolysaccharides were followed by intracerebroventricular injection of an inactive oligomer dose; (ii) a transgenic ‘double-hit’ model where lipopolysaccharides were given to A53T α-synuclein transgenic Parkinson’s disease mice. Results: Lipopolysaccharides induced a long-lasting neuroinflammatory response which facilitated the detrimental cognitive activities of oligomers. LPS-activated microglia and astrocytes responded differently to the oligomers with microglia activating further and acquiring a pro-inflammatory M1 phenotype, while astrocytes atrophied. In the transgenic ‘double-hit’ A53T mouse model, lipopolysaccharides aggravated cognitive deficits and increased microgliosis. Again, astrocytes responded differently to the double challenge. These findings indicate that peripherally induced neuroinflammation potentiates the α-synuclein oligomer’s actions and aggravates cognitive deficits in A53T mice. Conclusions: The fine management of both peripheral and central inflammation may offer a promising therapeutic approach to prevent or slow down some behavioural aspects in α-synucleinopathies.

Peripheral inflammation exacerbates α-synuclein toxicity and neuropathology in Parkinson's models

Caldinelli L.;Pollegioni L.;
2021-01-01

Abstract

Aims: Parkinson’s disease and related disorders are devastating neurodegenerative pathologies. Since α-synuclein was identified as a main component of Lewy bodies and neurites, efforts have been made to clarify the pathogenic mechanisms of α-synuclein's detrimental effects. α-synuclein oligomers are the most harmful species and may recruit and activate glial cells. Inflammation is emerging as a bridge between genetic susceptibility and environmental factors co-fostering Parkinson’s disease. However, direct evidence linking inflammation to the harmful activities of α-synuclein oligomers or to the Parkinson’s disease behavioural phenotype is lacking. Methods: To clarify whether neuroinflammation influences Parkinson’s disease pathogenesis, we developed: (i) a ‘double-hit’ approach in C57BL/6 naive mice where peripherally administered lipopolysaccharides were followed by intracerebroventricular injection of an inactive oligomer dose; (ii) a transgenic ‘double-hit’ model where lipopolysaccharides were given to A53T α-synuclein transgenic Parkinson’s disease mice. Results: Lipopolysaccharides induced a long-lasting neuroinflammatory response which facilitated the detrimental cognitive activities of oligomers. LPS-activated microglia and astrocytes responded differently to the oligomers with microglia activating further and acquiring a pro-inflammatory M1 phenotype, while astrocytes atrophied. In the transgenic ‘double-hit’ A53T mouse model, lipopolysaccharides aggravated cognitive deficits and increased microgliosis. Again, astrocytes responded differently to the double challenge. These findings indicate that peripherally induced neuroinflammation potentiates the α-synuclein oligomer’s actions and aggravates cognitive deficits in A53T mice. Conclusions: The fine management of both peripheral and central inflammation may offer a promising therapeutic approach to prevent or slow down some behavioural aspects in α-synucleinopathies.
2021
2020
neuroinflammation; nonmotor deficits; oligomeropathies; Parkinson’s disease; α-synuclein oligomers
La Vitola, P.; Balducci, C.; Baroni, M.; Artioli, L.; Santamaria, G.; Castiglioni, M.; Cerovic, M.; Colombo, L.; Caldinelli, L.; Pollegioni, L.; Forlo...espandi
File in questo prodotto:
File Dimensione Formato  
NeuropathologyApplNeurobio_2020_synuclein toxicity.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: DRM non definito
Dimensione 2.11 MB
Formato Adobe PDF
2.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2136368
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 61
  • ???jsp.display-item.citation.isi??? 63
social impact