Purpose: Immunotherapy for hepatocellular carcinoma (HCC) shows considerable promise in improving clinical outcomes. HepaVac-101 represents a single-arm, first-in-human phase I/II multicenter cancer vaccine trial for HCC (NCT03203005). It combines multipeptide antigens (IMA970A) with the TLR7/8/RIG I agonist CV8102. IMA970A includes 5 HLA-A+24 and 7 HLA-A+02 as well as 4 HLA-DR restricted peptides selected after mass spectrometric identification in human HCC tissues or cell lines. CV8102 is an RNA-based immunostimulator inducing a balanced Th1/Th2 immune response. Patients and Methods: A total of 82 patients with very early- to intermediate-stage HCCs were enrolled and screened for suitable HLA haplotypes and 22 put on study treatment. This consisted in a single infusion of low-dose cyclophosphamide followed by nine intradermal coadministrations of IMA970A and CV8102. Only patients with no disease relapse after standard-of-care treatments were vaccinated. The primary endpoints of the HepaVac-101 clinical trial were safety, tolerability, and antigen-specific T-cell responses. Secondary or exploratory endpoints included additional immunologic parameters and survival endpoints. Results: The vaccination showed a good safety profile. Transient mild-to-moderate injection-site reactions were the most frequent IMA970A/CV8102-related side effects. Immune responses against ≥1 vaccinated HLA class I tumor-associated peptide (TAA) and ≥1 vaccinated HLA class II TAA were respectively induced in 37% and 53% of the vaccinees. Conclusions: Immunotherapy may provide a great improvement in treatment options for HCC. HepaVac-101 is a first-inhuman clinical vaccine trial with multiple novel HLA class I- and class II-restricted TAAs against HCC. The results are initial evidence for the safety and immunogenicity of the vaccine. Further clinical evaluations are warranted.
Phase I/II Multicenter Trial of a Novel Therapeutic Cancer Vaccine, HepaVac-101, for Hepatocellular Carcinoma
Forlani, Greta;Accolla, Roberto S.;
2022-01-01
Abstract
Purpose: Immunotherapy for hepatocellular carcinoma (HCC) shows considerable promise in improving clinical outcomes. HepaVac-101 represents a single-arm, first-in-human phase I/II multicenter cancer vaccine trial for HCC (NCT03203005). It combines multipeptide antigens (IMA970A) with the TLR7/8/RIG I agonist CV8102. IMA970A includes 5 HLA-A+24 and 7 HLA-A+02 as well as 4 HLA-DR restricted peptides selected after mass spectrometric identification in human HCC tissues or cell lines. CV8102 is an RNA-based immunostimulator inducing a balanced Th1/Th2 immune response. Patients and Methods: A total of 82 patients with very early- to intermediate-stage HCCs were enrolled and screened for suitable HLA haplotypes and 22 put on study treatment. This consisted in a single infusion of low-dose cyclophosphamide followed by nine intradermal coadministrations of IMA970A and CV8102. Only patients with no disease relapse after standard-of-care treatments were vaccinated. The primary endpoints of the HepaVac-101 clinical trial were safety, tolerability, and antigen-specific T-cell responses. Secondary or exploratory endpoints included additional immunologic parameters and survival endpoints. Results: The vaccination showed a good safety profile. Transient mild-to-moderate injection-site reactions were the most frequent IMA970A/CV8102-related side effects. Immune responses against ≥1 vaccinated HLA class I tumor-associated peptide (TAA) and ≥1 vaccinated HLA class II TAA were respectively induced in 37% and 53% of the vaccinees. Conclusions: Immunotherapy may provide a great improvement in treatment options for HCC. HepaVac-101 is a first-inhuman clinical vaccine trial with multiple novel HLA class I- and class II-restricted TAAs against HCC. The results are initial evidence for the safety and immunogenicity of the vaccine. Further clinical evaluations are warranted.File | Dimensione | Formato | |
---|---|---|---|
clinical cancer research 2023.pdf
non disponibili
Descrizione: Articolo su rivista
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.