Dual-readout calorimetry is now a mature and well-known technology which guarantees excellent electromagnetic and hadronic resolution in the same detector. It has recently being proposed in the framework of IDEA (Innovative Detector for Electron-Positron Accelerators) for both Future Circular Collider (FCC-ee) and Circular Electron-Positron Collider (CEPC). After being extensively tested on prototypes, the dual-readout calorimetry is now moving toward a technology design study in order to be realistically available for an experiment. In this context, a full simulation of the calorimeter has been developed and used to estimate the expected performance of the detector. At the same time, the development of a novel technique for mass production of the detector modules, at an effective cost, is ongoing. As a first step, an electromagnetic-size prototype is under construction for a testbeam data taking originally foreseen in November 2020 and now moved to spring 2021, due to the Covid-19 pandemic spread.
Dual-readout calorimetry: Present status and perspective
Antonello M.;Caccia M.;Santoro R.;
2021-01-01
Abstract
Dual-readout calorimetry is now a mature and well-known technology which guarantees excellent electromagnetic and hadronic resolution in the same detector. It has recently being proposed in the framework of IDEA (Innovative Detector for Electron-Positron Accelerators) for both Future Circular Collider (FCC-ee) and Circular Electron-Positron Collider (CEPC). After being extensively tested on prototypes, the dual-readout calorimetry is now moving toward a technology design study in order to be realistically available for an experiment. In this context, a full simulation of the calorimeter has been developed and used to estimate the expected performance of the detector. At the same time, the development of a novel technique for mass production of the detector modules, at an effective cost, is ongoing. As a first step, an electromagnetic-size prototype is under construction for a testbeam data taking originally foreseen in November 2020 and now moved to spring 2021, due to the Covid-19 pandemic spread.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.