The management of difficult-to-treat acute and chronic respiratory infections (infections in cystic fibrosis, non-cystic fibrosis bronchiectasis, immunocompromised and mechanically ventilated patients) and difficult-to-treat pathogens (including multidrug-resistant strains) has become a challenge in clinical practice. The arsenal of conventional antibiotic drugs can be limited by tissue penetration, toxicities, or increasing antibiotic resistance. Inhaled antimicrobials are an interesting therapeutic approach for optimizing the management of respiratory infections. Due to extensive developments in liposome technology, a number of inhaled liposome-based antibiotic and antifungal formulations are available for human use and many products are undergoing clinical trials. Liposomes are biocompatible, biodegradable, and nontoxic vesicles able to encapsulate and carry antimicrobials, enhancing the therapeutic index of various agents and retention at the desired target within the lung. Liposomes reduce drug toxicity and improve tolerability, leading to better compliance and to decreased respiratory side effects. The aim of this article was to provide an up-to-date overview of nebulized liposomal antimicrobials for lung infections (with a special focus on liposomal amikacin, tobramycin, ciprofloxacin, and amphotericin B for inhalation), discussing the feasibility and therapeutic potential of these new strategies of preventing and treating bacteria, mycobacterial and fungal infections.

Inhaled Liposomal Antimicrobial Delivery in Lung Infections

Russo, Alessandro
Membro del Collaboration Group
;
Peghin, Maddalena
Membro del Collaboration Group
2020-01-01

Abstract

The management of difficult-to-treat acute and chronic respiratory infections (infections in cystic fibrosis, non-cystic fibrosis bronchiectasis, immunocompromised and mechanically ventilated patients) and difficult-to-treat pathogens (including multidrug-resistant strains) has become a challenge in clinical practice. The arsenal of conventional antibiotic drugs can be limited by tissue penetration, toxicities, or increasing antibiotic resistance. Inhaled antimicrobials are an interesting therapeutic approach for optimizing the management of respiratory infections. Due to extensive developments in liposome technology, a number of inhaled liposome-based antibiotic and antifungal formulations are available for human use and many products are undergoing clinical trials. Liposomes are biocompatible, biodegradable, and nontoxic vesicles able to encapsulate and carry antimicrobials, enhancing the therapeutic index of various agents and retention at the desired target within the lung. Liposomes reduce drug toxicity and improve tolerability, leading to better compliance and to decreased respiratory side effects. The aim of this article was to provide an up-to-date overview of nebulized liposomal antimicrobials for lung infections (with a special focus on liposomal amikacin, tobramycin, ciprofloxacin, and amphotericin B for inhalation), discussing the feasibility and therapeutic potential of these new strategies of preventing and treating bacteria, mycobacterial and fungal infections.
2020
2020
Administration, Inhalation; Anti-Bacterial Agents; Antifungal Agents; Cystic Fibrosis; Drug Resistance, Multiple, Bacterial; Drug Resistance, Multiple, Fungal; Feasibility Studies; Humans; Immunocompromised Host; Liposomes; Pneumonia; Respiration, Artificial; Treatment Outcome; Nebulizers and Vaporizers
Bassetti, Matteo; Vena, Antonio; Russo, Alessandro; Peghin, Maddalena
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2137673
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 89
  • ???jsp.display-item.citation.isi??? 76
social impact