In situ synthesis of topologically modified linear polyethylenes (PEs) using single-site polymerization catalysis is a challenging task that enables the production of advanced materials with tailored properties. We describe here our investigations aimed at an efficient generation of long-chain branches (LCB) in linear PEs using discrete B-, Al- and Zn-alkenyl co-reagents in combination with homogeneous rac-{EBTHI}ZrCl2 (1)/ or (nBuCp)ZrCl2 (2)/MAO catalytic systems. As corroborated by extensive rheological studies and 13C NMR spectroscopy, Al-and Zn-based reagents promote LCB formation via a two-step mechanism involving both vinylic group insertion and M → Zr transmetallation steps. In striking contrast, the B-alkenyl species was found to form hydrolytically stable B-centred cross-linked PE structures. The Mg-based reagent appeared to be reluctant towards Mg → Zr transmetallation reaction, providing only the products of vinylic group insertion, which after hydrolysis afforded short-chain branched (SCB) PEs. The experimental observations were rationalized by DFT computations.

Group 12 and 13 metal-alkenyl promoted generation of long-chain branching in metallocene-based polyethylene

Santoro O.
Co-primo
;
2022-01-01

Abstract

In situ synthesis of topologically modified linear polyethylenes (PEs) using single-site polymerization catalysis is a challenging task that enables the production of advanced materials with tailored properties. We describe here our investigations aimed at an efficient generation of long-chain branches (LCB) in linear PEs using discrete B-, Al- and Zn-alkenyl co-reagents in combination with homogeneous rac-{EBTHI}ZrCl2 (1)/ or (nBuCp)ZrCl2 (2)/MAO catalytic systems. As corroborated by extensive rheological studies and 13C NMR spectroscopy, Al-and Zn-based reagents promote LCB formation via a two-step mechanism involving both vinylic group insertion and M → Zr transmetallation steps. In striking contrast, the B-alkenyl species was found to form hydrolytically stable B-centred cross-linked PE structures. The Mg-based reagent appeared to be reluctant towards Mg → Zr transmetallation reaction, providing only the products of vinylic group insertion, which after hydrolysis afforded short-chain branched (SCB) PEs. The experimental observations were rationalized by DFT computations.
2022
2022
https://www.sciencedirect.com/science/article/pii/S0014305722002610
Ethylene Polymerisation, Metallocene, Al-alkenyl, B-alkenyl, Mg-alkenyl, Zn-Alkeny, lLong-Chain Branching, Rheology, DFT Calculations
Santoro, O.; Piola, L.; Mc Cabe, K.; Lhost, O.; Den Dauw, K.; Fernandez, A.; Welle, A.; Maron, L.; Carpentier, J. -F.; Kirillov, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2137741
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact