One of the main components of the extracellular matrix (ECM) of blood vessels is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the plasma membrane in the pericellular space via HAS or HA-binding proteins. Several cell surface proteins can interact with HA working as HA receptors, like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and the adventitia where it is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations that have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that induce the cells to exit from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Furthermore, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on deeply analyzing the effects of HA on vascular cell behavior.

Hyaluronan in pathophysiology of vascular diseases: specific roles in smooth muscle cells, endothelial cells, and macrophages

Parnigoni A.
Co-primo
;
Viola M.
Co-primo
;
Karousou E.;Rovera S.;Giaroni C.;Passi A.
Penultimo
;
Vigetti D.
Ultimo
2022-01-01

Abstract

One of the main components of the extracellular matrix (ECM) of blood vessels is hyaluronic acid or hyaluronan (HA). It is a ubiquitous polysaccharide belonging to the family of glycosaminoglycans, but, differently from other proteoglycan-associated glycosaminoglycans, it is synthesized on the plasma membrane by a family of three HA synthases (HAS). HA can be released as a free polymer in the extracellular space or remain associated with the plasma membrane in the pericellular space via HAS or HA-binding proteins. Several cell surface proteins can interact with HA working as HA receptors, like CD44, RHAMM, and LYVE-1. In physiological conditions, HA is localized in the glycocalyx and the adventitia where it is responsible for the loose and hydrated vascular structure favoring flexibility and allowing the stretching of vessels in response to mechanical forces. During atherogenesis, ECM undergoes dramatic alterations that have a crucial role in lipoprotein retention and in triggering multiple signaling cascades that induce the cells to exit from their quiescent status. HA becomes highly present in the media and neointima favoring smooth muscle cells dedifferentiation, migration, and proliferation that strongly contribute to vessel wall thickening. Furthermore, HA is able to modulate immune cell recruitment both within the vessel wall and on the endothelial cell layer. This review is focused on deeply analyzing the effects of HA on vascular cell behavior.
2022
2022
atherosclerosis; cell microenvironment; extracellular matrix; proteoglycans; restenosis; Endothelial Cells; Humans; Hyaluronan Receptors; Macrophages; Myocytes, Smooth Muscle; Atherosclerosis; Hyaluronic Acid
Parnigoni, A.; Viola, M.; Karousou, E.; Rovera, S.; Giaroni, C.; Passi, A.; Vigetti, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2140091
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 15
social impact