Let A be the set of all integers of the form gcd(n; Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A ∩ [1; x]) ≫ x= log x for all x ≥ 2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse [5] which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.

On the greatest common divisor of n and nth Fibonacci number

Leonetti P
;
2018-01-01

Abstract

Let A be the set of all integers of the form gcd(n; Fn), where n is a positive integer and Fn denotes the nth Fibonacci number. We prove that #(A ∩ [1; x]) ≫ x= log x for all x ≥ 2 and that A has zero asymptotic density. Our proofs rely upon a recent result of Cubre and Rouse [5] which gives, for each positive integer n, an explicit formula for the density of primes p such that n divides the rank of appearance of p, that is, the smallest positive integer k such that p divides Fk.
2018
2018
Fibonacci numbers; Greatest common divisor; Natural density; Rank of appearance
Leonetti, P; Sanna, C
File in questo prodotto:
File Dimensione Formato  
Gcdfibo.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 133.05 kB
Formato Adobe PDF
133.05 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2142084
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 8
social impact