Let f be a real-valued radially lower semicontinuous function defined on a convex subset D of a real vector space. It is shown that f is convex if and only if, for all x, y ∈ D there exists α = α(x, y) ∈ (0, 1) such that f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y).

A Characterization of Convex Functions

Leonetti P
2018-01-01

Abstract

Let f be a real-valued radially lower semicontinuous function defined on a convex subset D of a real vector space. It is shown that f is convex if and only if, for all x, y ∈ D there exists α = α(x, y) ∈ (0, 1) such that f (αx + (1 − α)y) ≤ αf (x) + (1 − α)f (y).
2018
2018
52A07; MSC: Primary 25B62; Secondary 26A51
Leonetti, P
File in questo prodotto:
File Dimensione Formato  
convex.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 79.58 kB
Formato Adobe PDF
79.58 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2142085
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact