Let x be a sequence taking values in a separable metric space and let I be an Fσδ-ideal on the positive integers (in particular, I can be any Erdős–Ulam ideal or any summable ideal). It is shown that the collection of subsequences of x which preserve the set of I-cluster points of x is of second category if and only if the set of I-cluster points of x coincides with the set of ordinary limit points of x; moreover, in this case, it is comeager. The analogue for I-limit points is provided. As a consequence, the collection of subsequences of x which preserve the set of ordinary limit points is comeager.
Limit points of subsequences
Leonetti P
2019-01-01
Abstract
Let x be a sequence taking values in a separable metric space and let I be an Fσδ-ideal on the positive integers (in particular, I can be any Erdős–Ulam ideal or any summable ideal). It is shown that the collection of subsequences of x which preserve the set of I-cluster points of x is of second category if and only if the set of I-cluster points of x coincides with the set of ordinary limit points of x; moreover, in this case, it is comeager. The analogue for I-limit points is provided. As a consequence, the collection of subsequences of x which preserve the set of ordinary limit points is comeager.File | Dimensione | Formato | |
---|---|---|---|
022_limitpoint_subsequences.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
325.38 kB
Formato
Adobe PDF
|
325.38 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.