The knowledge of the initial flux in conventional neutrino beams represents the main limitation for a precision (1%) measurement of nu, and nu(mu), cross-sections. The ENUBET ERC project is studying a facility based on a narrow-band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. In particular, the identification of large-angle positrons from K-e3 decays at single-particle level can reduce the nu(e) flux uncertainty at the level of 1%. This setup would allow for an unprecedented measurement of the nu(e) cross-section at the GeV scale. Such an experimental input would be highly beneficial to reduce the budget of systematic uncertainties in the next long baseline oscillation experiments. The ENUBET Collaboration presented at ICNFP 2020 the advances in the design and simulation of the hadron beamline, the optimization and performances of a 20 m long focusing transfer line, the design of an horn-based beamline, the results in terms of particle identification in the decay tunnel, and the final design of the ENUBET demonstrator for the instrumented decay tunnel.

The ENUBET experiment

A. Berra;M. Prest;
2022-01-01

Abstract

The knowledge of the initial flux in conventional neutrino beams represents the main limitation for a precision (1%) measurement of nu, and nu(mu), cross-sections. The ENUBET ERC project is studying a facility based on a narrow-band beam capable of constraining the neutrino fluxes normalization through the monitoring of the associated charged leptons in an instrumented decay tunnel. In particular, the identification of large-angle positrons from K-e3 decays at single-particle level can reduce the nu(e) flux uncertainty at the level of 1%. This setup would allow for an unprecedented measurement of the nu(e) cross-section at the GeV scale. Such an experimental input would be highly beneficial to reduce the budget of systematic uncertainties in the next long baseline oscillation experiments. The ENUBET Collaboration presented at ICNFP 2020 the advances in the design and simulation of the hadron beamline, the optimization and performances of a 20 m long focusing transfer line, the design of an horn-based beamline, the results in terms of particle identification in the decay tunnel, and the final design of the ENUBET demonstrator for the instrumented decay tunnel.
2022
Neutrino; neutrino beams
Delogu, C. C.; Acerbi, F.; Berra, A.; Bonesini, M.; Branca, A.; Brizzolari, C.; Brunetti, G.; Calviani, M.; Capelli, S.; Carturan, S.; Catanesi, M. G.; Cecchini, S.; Charitonidis, N.; Cindolo, F.; Collazuol, G.; Conti, E.; Dal Corso, F.; De Rosa, G.; Falcone, A.; Gola, A.; Iacob, F.; Jollet, C.; Kain, V.; Klic??ek, B.; Kudenko, Y.; Laveder, M.; Longhin, A.; Ludovici, L.; Lutsenko, E.; Magaletti, L.; Mandrioli, G.; Margotti, A.; Mascagna, V.; Mauri, N.; Meazza, L.; Meregaglia, A.; Mezzetto, M.; Nessi, M.; Paoloni, A.; Pari, M.; Parozzi, E. G.; Pasqualini, L.; Paternoster, G.; Patrizii, L.; Pozzato, M.; Prest, M.; Pupilli, F.; Radicioni, E.; Riccio, C.; Ruggeri, A. C.; Scian, C.; Sirri, G.; Stipc??evi??, M.; Tenti, M.; Terranova, F.; Torti, M.; Vallazza, E.; Velotti, F.; Votano, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2143555
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact