Clinically relevant glycopeptide antibiotics remain among the most successful classes of natural antibacterials. This success, however, is endangered by the spread of glycopeptide resistance genes, also known as van genes. Thus, it is important to trace and comprehend possible routes of van gene dissemination. In the current work, we present a comprehensive bioinformatic analysis aimed at mapping the occurrence of van genes beyond the Actinobacteria phylum—the most likely natural reservoir of van genes. We show that two additional classes of Gram-positive bacteria, Erysipelotrichia and Ktedonobacteria, as well as one class of Gram-negative bacteria, Anaerolineae, carry van genes. Additionally, we demonstrate that various new genera belonging to the classes Clostridia and Bacilli also carry van genes. The majority of discovered van loci are co-localized with MGE-related genes of various types. Finally, we propose a phylogeny-based scenario for the spread of van genes, unraveling a network of consequential horizontal gene transfer events linking the phylum Actinobacteria with the five other bacterial classes carrying van genes.
Occurrence of vanHAX and related genes beyond the Actinobacteria phylum
Oleksandr Yushchuk;Elisa Binda;Flavia Marinelli
2022-01-01
Abstract
Clinically relevant glycopeptide antibiotics remain among the most successful classes of natural antibacterials. This success, however, is endangered by the spread of glycopeptide resistance genes, also known as van genes. Thus, it is important to trace and comprehend possible routes of van gene dissemination. In the current work, we present a comprehensive bioinformatic analysis aimed at mapping the occurrence of van genes beyond the Actinobacteria phylum—the most likely natural reservoir of van genes. We show that two additional classes of Gram-positive bacteria, Erysipelotrichia and Ktedonobacteria, as well as one class of Gram-negative bacteria, Anaerolineae, carry van genes. Additionally, we demonstrate that various new genera belonging to the classes Clostridia and Bacilli also carry van genes. The majority of discovered van loci are co-localized with MGE-related genes of various types. Finally, we propose a phylogeny-based scenario for the spread of van genes, unraveling a network of consequential horizontal gene transfer events linking the phylum Actinobacteria with the five other bacterial classes carrying van genes.File | Dimensione | Formato | |
---|---|---|---|
genes-13-01960-v3.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
4.35 MB
Formato
Adobe PDF
|
4.35 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.