Background: The face is the area most exposed to the normal course of skin aging, both intrinsically and extrinsically. The aim of the study was to evaluate the cellular and clinical response of a therapeutic protocol aimed at countering facial skin aging. Materials and methods: Twenty female patients with facial skin laxity and photodamage underwent combined therapy including mesotherapy using non-cross-linked hyaluronic acid with calcium hydroxyapatite and an infrared energy-based device treatment with subsequent implementation of PEG-cross-linked hyaluronic acid soft tissue fillers. To evaluate the benefits, patients underwent histological, immunological, and biomechanical evaluations before the treatment and at 21 and 150 days after the treatment. Results: The histological results at 21 days and 150 days after the procedure showed an increase in the number of fibroblasts and angiogenesis. As for the immunological aspect, it was shown that the treatment has an immunomodulating action, avoiding the activation of CD4 and CD8 cells. Biomechanical data showed that, at 150 days after treatment, the average changes in skin elasticity increased by 72% and the skin hydration increased by 49%. Conclusions: A combination of an infrared energy-based device treatment with both non-cross-linked hyaluronic acid and novel PEG-cross-linked hyaluronic acid leads to numerous positive cutaneous changes after histological, immunological, and biomechanical evaluations.

HA PEGylated Filler in Association with an Infrared Energy Device for the Treatment of Facial Skin Aging: 150 Day Follow-Up Data Report

Protasoni, Marina;Zerbinati, Nicola
2022-01-01

Abstract

Background: The face is the area most exposed to the normal course of skin aging, both intrinsically and extrinsically. The aim of the study was to evaluate the cellular and clinical response of a therapeutic protocol aimed at countering facial skin aging. Materials and methods: Twenty female patients with facial skin laxity and photodamage underwent combined therapy including mesotherapy using non-cross-linked hyaluronic acid with calcium hydroxyapatite and an infrared energy-based device treatment with subsequent implementation of PEG-cross-linked hyaluronic acid soft tissue fillers. To evaluate the benefits, patients underwent histological, immunological, and biomechanical evaluations before the treatment and at 21 and 150 days after the treatment. Results: The histological results at 21 days and 150 days after the procedure showed an increase in the number of fibroblasts and angiogenesis. As for the immunological aspect, it was shown that the treatment has an immunomodulating action, avoiding the activation of CD4 and CD8 cells. Biomechanical data showed that, at 150 days after treatment, the average changes in skin elasticity increased by 72% and the skin hydration increased by 49%. Conclusions: A combination of an infrared energy-based device treatment with both non-cross-linked hyaluronic acid and novel PEG-cross-linked hyaluronic acid leads to numerous positive cutaneous changes after histological, immunological, and biomechanical evaluations.
HA PEGylated filler; PEG-cross-linked hyaluronic acid; facial skin aging; infrared energy device
Kubik, Paweł; Jankau, Jerzy; Rauso, Raffaele; Galadari, Hassan; Protasoni, Marina; Gruszczyński, Wojciech; Grzanka, Dariusz; Smolińska, Marta; Antosik, Paulina; Piesiaków, Maria-Luiza; Kodłubańska, Lidia; Zagajewska, Anna; Łukasik, Bartłomiej; Stabile, Giorgio; Zerbinati, Nicola
File in questo prodotto:
File Dimensione Formato  
38.pharmaceuticals-15-01355.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.83 MB
Formato Adobe PDF
2.83 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2144653
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact