The assessment of baroreflex function since the first appearance of endotoxemia is important because the arterial baroreflex should exert a protective role during sepsis. Nevertheless, contrasting results were previously reported. This could be due to the hemodynamic instability characterizing this condition that may per se interfere with reflex cardiovascular adjustments. The aim of our study was therefore to study the baroreflex function (a) since the very beginning of infusion of Escherichia coli lipopolysaccharide (LPS) toxin and (b) in absence of the unloading effect produced by a decrease in blood pressure. Lipopolysaccharide was infused in 10 rats for 20 min at the infusion rate of 0.05 mg . kg(-1) . min(-1). Blood pressure was continuously measured before, during, and after infusion, and the baroreflex function was evaluated analyzing spontaneous fluctuations of systolic blood pressure and pulse interval by the sequence and transfer-function techniques. Plasma concentrations of inflammatory (interleukin 6, tumor necrosis factor alpha) and anti-inflammatory (interleukin 10) cytokines were measured in other eight rats, similarly instrumented, four of which receiving the same LPS infusion. We found that blood pressure levels did not change with the infusion of LPS, whereas inflammatory cytokines increased significantly. The baroreflex sensitivity was significantly reduced 10 min after the beginning of LPS infusion, reached values about half those at baseline within 15 min after the start of infusion, and remained significantly low after the end of infusion. In conclusion, we documented that septic shock inducing LPS infusion is responsible for a very rapid impairment of the baroreflex function, independent from the level of blood pressure.
INFUSION OF ESCHERICHIA COLI LIPOPOLYSACCHARIDE TOXIN IN RATS PRODUCES AN EARLY AND SEVERE IMPAIRMENT OF BAROREFLEX FUNCTION IN ABSENCE OF BLOOD PRESSURE CHANGES
Castiglioni P;
2013-01-01
Abstract
The assessment of baroreflex function since the first appearance of endotoxemia is important because the arterial baroreflex should exert a protective role during sepsis. Nevertheless, contrasting results were previously reported. This could be due to the hemodynamic instability characterizing this condition that may per se interfere with reflex cardiovascular adjustments. The aim of our study was therefore to study the baroreflex function (a) since the very beginning of infusion of Escherichia coli lipopolysaccharide (LPS) toxin and (b) in absence of the unloading effect produced by a decrease in blood pressure. Lipopolysaccharide was infused in 10 rats for 20 min at the infusion rate of 0.05 mg . kg(-1) . min(-1). Blood pressure was continuously measured before, during, and after infusion, and the baroreflex function was evaluated analyzing spontaneous fluctuations of systolic blood pressure and pulse interval by the sequence and transfer-function techniques. Plasma concentrations of inflammatory (interleukin 6, tumor necrosis factor alpha) and anti-inflammatory (interleukin 10) cytokines were measured in other eight rats, similarly instrumented, four of which receiving the same LPS infusion. We found that blood pressure levels did not change with the infusion of LPS, whereas inflammatory cytokines increased significantly. The baroreflex sensitivity was significantly reduced 10 min after the beginning of LPS infusion, reached values about half those at baseline within 15 min after the start of infusion, and remained significantly low after the end of infusion. In conclusion, we documented that septic shock inducing LPS infusion is responsible for a very rapid impairment of the baroreflex function, independent from the level of blood pressure.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.