The paper presents a new textile-based wearable system for the unobtrusive recording of cardiorespiratory and motion signals during spontaneous behavior along with the first results concerning the application of this device in daily life and in a clinical environment. The system, called MagIC (Maglietta Interattiva Computerizzata), is composed of a vest, including textile sensors for detecting ECG and respiratory activity, and a portable electronic board for motion detection, signal preprocessing and wireless data transmission to a remote monitoring station. The MagIC system has been tested in freely moving subjects at work, at home, while driving and cycling and in microgravity condition during a parabolic flight. Applicability of the system in cardiac in-patients is now under evaluation. Preliminary data derived from recordings performed on patients in bed and during physical exercise showed 1) good signal quality over most of the monitoring periods, 2) a correct identification of arrhythmic events, and 3) a correct estimation of the average beat-by-beat heart rate. These positive results supports further developments of the MagIC system, aimed at tuning this approach for a routine use in clinical practice and in daily life
MagIC System: a New Textile-Based Wearable Device for Biological Signal Monitoring. Applicability in Daily Life and Clinical Setting
Castiglioni P
2005-01-01
Abstract
The paper presents a new textile-based wearable system for the unobtrusive recording of cardiorespiratory and motion signals during spontaneous behavior along with the first results concerning the application of this device in daily life and in a clinical environment. The system, called MagIC (Maglietta Interattiva Computerizzata), is composed of a vest, including textile sensors for detecting ECG and respiratory activity, and a portable electronic board for motion detection, signal preprocessing and wireless data transmission to a remote monitoring station. The MagIC system has been tested in freely moving subjects at work, at home, while driving and cycling and in microgravity condition during a parabolic flight. Applicability of the system in cardiac in-patients is now under evaluation. Preliminary data derived from recordings performed on patients in bed and during physical exercise showed 1) good signal quality over most of the monitoring periods, 2) a correct identification of arrhythmic events, and 3) a correct estimation of the average beat-by-beat heart rate. These positive results supports further developments of the MagIC system, aimed at tuning this approach for a routine use in clinical practice and in daily lifeI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.