This study’s objectives were to determine the effect of Largemouth Bass (LMB) muscle hydrolysates obtained using same-species digestive enzymes and the degree of LMB muscle hydrolysis when included in the first feeds of growth performance and survival, skeletal development, intestinal peptide uptake, and muscle-free amino acid omposition of larval LMB. LMB muscle was mixed with digestive enzymes from adult LMB, and hydrolyzed for 1.5, 3, and 6 h, respectively. Five diets were produced, the intact diet containing non-hydrolyzed muscle and four diets with 37% muscle hydrolysate inclusion. Those diets were characterized by their level of each hydrolysate (presented as a ratio of 1.5, 3, and 6 Ts hydrolysates): 1:1:1, 1:3:6, 1:3:1, 6:3:1 for diets A, B, C, and D, respectively. To account for gut development, one group of larval LMB was fed a weekly series of diets B, C, and D to provide an increasing molecular weight profile throughout development. This group was compared against others that received either; (1) diets D, C, and B; (2) diet A; or (3) intact diet. The initial inclusion of the hydrolysates significantly improved the total length of the larval LMB; however, neither the hydrolysate inclusion nor the series of dietary molecular weight profiles improved the overall growth of larval LMB. The inclusion of hydrolysates significantly decreased the occurrence of skeletal deformities. The degree of hydrolysis did not have a significant effect on the parameters measured, except for intestinal peptide uptake, which was increased in the group that received the most hydrolyzed diet at the final time of sampling. The lack of overall growth improvement suggests that while the hydrolysates improve the initial growth performance, further research is necessary to determine the optimal molecular weight profile, hydrolysate inclusion level, and physical properties of feeds for larval LMB.
A Novel Approach in the Development of Larval Largemouth Bass Micropterus Salmoides Diets Using Largemouth Bass Muscle Hydrolysates as the Protein Source.
Terova G;
2023-01-01
Abstract
This study’s objectives were to determine the effect of Largemouth Bass (LMB) muscle hydrolysates obtained using same-species digestive enzymes and the degree of LMB muscle hydrolysis when included in the first feeds of growth performance and survival, skeletal development, intestinal peptide uptake, and muscle-free amino acid omposition of larval LMB. LMB muscle was mixed with digestive enzymes from adult LMB, and hydrolyzed for 1.5, 3, and 6 h, respectively. Five diets were produced, the intact diet containing non-hydrolyzed muscle and four diets with 37% muscle hydrolysate inclusion. Those diets were characterized by their level of each hydrolysate (presented as a ratio of 1.5, 3, and 6 Ts hydrolysates): 1:1:1, 1:3:6, 1:3:1, 6:3:1 for diets A, B, C, and D, respectively. To account for gut development, one group of larval LMB was fed a weekly series of diets B, C, and D to provide an increasing molecular weight profile throughout development. This group was compared against others that received either; (1) diets D, C, and B; (2) diet A; or (3) intact diet. The initial inclusion of the hydrolysates significantly improved the total length of the larval LMB; however, neither the hydrolysate inclusion nor the series of dietary molecular weight profiles improved the overall growth of larval LMB. The inclusion of hydrolysates significantly decreased the occurrence of skeletal deformities. The degree of hydrolysis did not have a significant effect on the parameters measured, except for intestinal peptide uptake, which was increased in the group that received the most hydrolyzed diet at the final time of sampling. The lack of overall growth improvement suggests that while the hydrolysates improve the initial growth performance, further research is necessary to determine the optimal molecular weight profile, hydrolysate inclusion level, and physical properties of feeds for larval LMB.File | Dimensione | Formato | |
---|---|---|---|
Animals, 2023 Molinari Micropterus muscle_Open access.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Creative commons
Dimensione
3.13 MB
Formato
Adobe PDF
|
3.13 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.