Soil-borne nematodes establish close associations with several bacterial species. Whether they confer benefits to their hosts has been investigated in only a few nematode-bacteria systems. Their ecological function, therefore, remains poorly understood. In this study, we isolated several bacterial species from rhabditid nematodes, molecularly identified them, evaluated their entomopathogenic potential on Galleria mellonella larvae, and measured immune responses of G. mellonella larvae to their infection. Bacteria were isolated from Acrobeloides sp., A. bodenheimeri, Heterorhabditis bacteriophora, Oscheius tipulae, and Pristionchus maupasi nematodes. They were identified as Acinetobacter sp., Alcaligenes sp., Bacillus cereus, Enterobacter sp., Kaistia sp., Lysinibacillus fusiformis, Morganella morganii subsp. morganii, Klebsiella quasipneumoniae subsp. quasipneumoniae, and Pseudomonas aeruginosa. All bacterial strains were found to be highly entomopathogenic as they killed at least 53.33% G. mellonella larvae within 72h post-infection, at a dose of 106 CFU/larvae. Among them, Lysinibacillus fusiformis, Enterobacter sp., Acinetobacter sp., and K. quasipneumoniae subsp. quasipneumoniae were the most entomopathogenic bacteria. Insects strongly responded to bacterial infection. However, their responses were apparently little effective to counteract bacterial infection. Our study, therefore, shows that bacteria associated with soil-borne nematodes have entomopathogenic capacities. From an applied perspective, our study motivates more research to determine the potential of these bacterial strains as biocontrol agents in environmentally friendly and sustainable agriculture.

Entomopathogenic potential of bacteria associated with soil-borne nematodes and insect immune responses to their infection

Mastore, Maristella;Caramella, Sara;Brivio, Maurizio Francesco
;
2023-01-01

Abstract

Soil-borne nematodes establish close associations with several bacterial species. Whether they confer benefits to their hosts has been investigated in only a few nematode-bacteria systems. Their ecological function, therefore, remains poorly understood. In this study, we isolated several bacterial species from rhabditid nematodes, molecularly identified them, evaluated their entomopathogenic potential on Galleria mellonella larvae, and measured immune responses of G. mellonella larvae to their infection. Bacteria were isolated from Acrobeloides sp., A. bodenheimeri, Heterorhabditis bacteriophora, Oscheius tipulae, and Pristionchus maupasi nematodes. They were identified as Acinetobacter sp., Alcaligenes sp., Bacillus cereus, Enterobacter sp., Kaistia sp., Lysinibacillus fusiformis, Morganella morganii subsp. morganii, Klebsiella quasipneumoniae subsp. quasipneumoniae, and Pseudomonas aeruginosa. All bacterial strains were found to be highly entomopathogenic as they killed at least 53.33% G. mellonella larvae within 72h post-infection, at a dose of 106 CFU/larvae. Among them, Lysinibacillus fusiformis, Enterobacter sp., Acinetobacter sp., and K. quasipneumoniae subsp. quasipneumoniae were the most entomopathogenic bacteria. Insects strongly responded to bacterial infection. However, their responses were apparently little effective to counteract bacterial infection. Our study, therefore, shows that bacteria associated with soil-borne nematodes have entomopathogenic capacities. From an applied perspective, our study motivates more research to determine the potential of these bacterial strains as biocontrol agents in environmentally friendly and sustainable agriculture.
2023
2023
entomopathogens; nematodes; insects; immunity; biological control
Loulou, Ameni; Mastore, Maristella; Caramella, Sara; Bhat, Aashaq Hussain; Brivio, Maurizio Francesco; Machado, Ricardo A R; Kallel, Sadreddine...espandi
File in questo prodotto:
File Dimensione Formato  
2023 Brivio Plos.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2145931
Citazioni
  • ???jsp.display-item.citation.pmc??? 2
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact