We developed a high-resolution magnetochronology of the Pleistocene stratigraphy of the Monte Netto hillock, a tectonically uplifted structure in the Po Plain of northern Italy. Our data allowed reconstructing the depositional age of the sequence and assessing rates of deformation and rock uplift of the neotectonic structure, thus providing constraints on the tectono-sedimentary evolution of this seismically active part of the buried Southern Alps. Using a combination of magnetostratigraphy and paleosecular variation analysis, we generated an age-depth model for the Monte Netto stratigraphy that encompasses, from the top, Upper Pleistocene (11–72 ka) loess-paleosols overlaying fluvial sediments spanning the Brunhes-Matuyama boundary (773 ka) and the top of the Jaramillo (990 ka). The identification of the same magneto-chronostratigraphic surfaces in nearby drill cores from regions of the Po Plain that have not been affected by neotectonic deformation allowed estimating a mean rate of tectonic uplift of the hillock relative to the neighboring plain of 11.3 ± 1.5 cm/ka, and an absolute uplift relative to sea level of ∼19.3 cm/ka. Finally, our paleomagnetic analyses from the uppermost loess sequence disclosed the complexity of the tectonic evolution of the Monte Netto structure, which shows evidence of a two-phase rotational deformation linked to coseismic surface faulting due to recent seismic activity.

High-resolution magnetochronology detects multiple stages of Pleistocene tectonic uplift and deformation in the Po Plain of northern Italy

Livio, Franz
Conceptualization
;
Michetti, Alessandro M.
Penultimo
Writing – Review & Editing
;
2023-01-01

Abstract

We developed a high-resolution magnetochronology of the Pleistocene stratigraphy of the Monte Netto hillock, a tectonically uplifted structure in the Po Plain of northern Italy. Our data allowed reconstructing the depositional age of the sequence and assessing rates of deformation and rock uplift of the neotectonic structure, thus providing constraints on the tectono-sedimentary evolution of this seismically active part of the buried Southern Alps. Using a combination of magnetostratigraphy and paleosecular variation analysis, we generated an age-depth model for the Monte Netto stratigraphy that encompasses, from the top, Upper Pleistocene (11–72 ka) loess-paleosols overlaying fluvial sediments spanning the Brunhes-Matuyama boundary (773 ka) and the top of the Jaramillo (990 ka). The identification of the same magneto-chronostratigraphic surfaces in nearby drill cores from regions of the Po Plain that have not been affected by neotectonic deformation allowed estimating a mean rate of tectonic uplift of the hillock relative to the neighboring plain of 11.3 ± 1.5 cm/ka, and an absolute uplift relative to sea level of ∼19.3 cm/ka. Finally, our paleomagnetic analyses from the uppermost loess sequence disclosed the complexity of the tectonic evolution of the Monte Netto structure, which shows evidence of a two-phase rotational deformation linked to coseismic surface faulting due to recent seismic activity.
2023
2023
https://www.cambridge.org/core/journals/quaternary-research/article/abs/highresolution-magnetochronology-detects-multiple-stages-of-pleistocene-tectonic-uplift-and-deformation-in-the-po-plain-of-northern-italy/3A6F7848A7835CBC939C56812FA815BD
Magnetochronology; Pleistocene; Paleosecular variations; Loess-paleosols; Neotectonic deformation; Po Plain
Perini, Serena; Muttoni, Giovanni; Livio, Franz; Zucali, Michele; Michetti, Alessandro M.; Zerboni, Andrea
File in questo prodotto:
File Dimensione Formato  
Perini et al 2023 Monte Netto paleomag.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.88 MB
Formato Adobe PDF
1.88 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
post print Perini et al 2022 paleomag QUA-22-39_R1.pdf

Open Access dal 26/07/2023

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.79 MB
Formato Adobe PDF
2.79 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2146171
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact