The chiral resolving ability of the commercially available amylose (3,5-dimethylphenylcarbamate)-based chiral stationary phase (CSP) toward four chiral probes representative of four kinds of stereogenicity (central, axial, helical, and planar) was investigated. Besides chirality, the evident structural feature of selectands is an extremely limited conformational freedom. The chiral rigid analytes were analyzed by using pure short alcohols as mobile phases at different column temperatures. The enantioselectivity was found to be suitable for all compounds investigated. This evidence confirms that the use of the amylose-based CSP in HPLC is an effective strategy for obtaining the resolution of chiral compounds containing any kind of stereogenic element. In addition, the experimental retention and enantioselectivity behavior, as well as the established enantiomer elution order of the investigated chiral analytes, may be used as key information to track essential details on the enantiorecognition mechanism of the amylose-based chiral stationary phase.

HPLC Enantioseparation of Rigid Chiral Probes with Central, Axial, Helical, and Planar Stereogenicity on an Amylose (3,5-Dimethylphenylcarbamate) Chiral Stationary Phase

Benincori T.;Fontana F.;
2022-01-01

Abstract

The chiral resolving ability of the commercially available amylose (3,5-dimethylphenylcarbamate)-based chiral stationary phase (CSP) toward four chiral probes representative of four kinds of stereogenicity (central, axial, helical, and planar) was investigated. Besides chirality, the evident structural feature of selectands is an extremely limited conformational freedom. The chiral rigid analytes were analyzed by using pure short alcohols as mobile phases at different column temperatures. The enantioselectivity was found to be suitable for all compounds investigated. This evidence confirms that the use of the amylose-based CSP in HPLC is an effective strategy for obtaining the resolution of chiral compounds containing any kind of stereogenic element. In addition, the experimental retention and enantioselectivity behavior, as well as the established enantiomer elution order of the investigated chiral analytes, may be used as key information to track essential details on the enantiorecognition mechanism of the amylose-based chiral stationary phase.
2022
amylose (3,5-dimethylphenylcarbamate); axial stereogenicity; Chiralpak AD-3; helicene; HPLC enantioseparation; planar stereogenicity; trypticene
Rizzo, S.; Benincori, T.; Fontana, F.; Pasini, D.; Cirilli, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2146573
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact