Mobile apps represent essential tools in our daily routines, supporting us in almost every task. However, this assistance might imply a high cost in terms of privacy. Indeed, mobile apps gather a massive amount of data about individuals (e.g., users’ profiles and habits) and their devices (e.g., locations), where not all are strictly needed for app execution. According to privacy laws, apps’ providers must inform end-users on adopted data usage practices (e.g., which data are collected and for which purpose). Unfortunately, understanding these practices is a complex task for average end-users. The result is that they install apps without understanding their privacy implications. To support users in making more privacy-aware decisions on app usage, we propose a risk estimation approach based on an analysis of the app’s code. This analysis adopts a hybrid strategy, exploiting static and dynamic code analyses. Static analysis aims at discovering which personal data an app is collecting to determine whether the target app is asking more than required. This gives the first estimation of the app’s risk level. In addition, we also perform a dynamic analysis of the target app’s code. This further analysis helps determining whether the collected personal data is consumed locally on the mobile device or sent out to external services. If this happens, the risk level has to be increased, as personal data are more exposed. To prove the proposal’s effectiveness, we run several experiments involving different groups of participants. The obtained accuracy results are promising and outperform those obtained with static analysis only.

A Risk Estimation Mechanism for Android Apps based on Hybrid Analysis

Son H. X.;Carminati B.;Ferrari E.
2022-01-01

Abstract

Mobile apps represent essential tools in our daily routines, supporting us in almost every task. However, this assistance might imply a high cost in terms of privacy. Indeed, mobile apps gather a massive amount of data about individuals (e.g., users’ profiles and habits) and their devices (e.g., locations), where not all are strictly needed for app execution. According to privacy laws, apps’ providers must inform end-users on adopted data usage practices (e.g., which data are collected and for which purpose). Unfortunately, understanding these practices is a complex task for average end-users. The result is that they install apps without understanding their privacy implications. To support users in making more privacy-aware decisions on app usage, we propose a risk estimation approach based on an analysis of the app’s code. This analysis adopts a hybrid strategy, exploiting static and dynamic code analyses. Static analysis aims at discovering which personal data an app is collecting to determine whether the target app is asking more than required. This gives the first estimation of the app’s risk level. In addition, we also perform a dynamic analysis of the target app’s code. This further analysis helps determining whether the collected personal data is consumed locally on the mobile device or sent out to external services. If this happens, the risk level has to be increased, as personal data are more exposed. To prove the proposal’s effectiveness, we run several experiments involving different groups of participants. The obtained accuracy results are promising and outperform those obtained with static analysis only.
2022
Hybrid analysis; Mobile apps; Privacy risk assessment
Son, H. X.; Carminati, B.; Ferrari, E.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2146793
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 7
social impact