While massive black holes (MBHs) are known to inhabit all massive galaxies, their ubiquitous presence in dwarf galaxies has not been confirmed yet, with only a limited number of sources detected so far. Recently, some studies proposed infrared emission as an alternative way to identify MBHs in dwarfs, based on a similar approach usually applied to quasars. In this study, by accurately combining optical and infrared data taking into account resolution effects and source overlapping, we investigate in detail the possible limitations of this approach with current ground-based facilities, finding a quite low (∼0.4 per cent) fraction of active MBH in dwarfs that are luminous in mid-infrared, consistent with several previous results. Our results suggest that the infrared selection is strongly affected by several limitations that make the identification of MBHs in dwarf galaxies currently prohibitive, especially because of the very poor resolution compared to optical surveys, and the likely contamination by nearby sources, although we find a few good candidates worth further follow-ups. Optical, X-ray, and radio observations therefore still represent the most secure way to search for MBH in dwarfs.

Difficulties in mid-infrared selection of AGNs in dwarf galaxies

Lupi A.;Sbarrato T.;
2020-01-01

Abstract

While massive black holes (MBHs) are known to inhabit all massive galaxies, their ubiquitous presence in dwarf galaxies has not been confirmed yet, with only a limited number of sources detected so far. Recently, some studies proposed infrared emission as an alternative way to identify MBHs in dwarfs, based on a similar approach usually applied to quasars. In this study, by accurately combining optical and infrared data taking into account resolution effects and source overlapping, we investigate in detail the possible limitations of this approach with current ground-based facilities, finding a quite low (∼0.4 per cent) fraction of active MBH in dwarfs that are luminous in mid-infrared, consistent with several previous results. Our results suggest that the infrared selection is strongly affected by several limitations that make the identification of MBHs in dwarf galaxies currently prohibitive, especially because of the very poor resolution compared to optical surveys, and the likely contamination by nearby sources, although we find a few good candidates worth further follow-ups. Optical, X-ray, and radio observations therefore still represent the most secure way to search for MBH in dwarfs.
2020
Galaxies: active; Galaxies: dwarf; Galaxies: evolution
Lupi, A.; Sbarrato, T.; Carniani, S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2147997
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 13
social impact