Let X be a real separable Hilbert space. Let C be a linear, bounded, non-negative self-adjoint operator on X and let A be the infinitesimal generator of a strongly continuous semigroup in X. Let { W(t) } t≥ be a X-valued cylindrical Wiener process on a filtered (normal) probability space (Ω,F,{Ft}t≥0,P). Let F: Dom (F) ⊆ X→ X be a smooth enough function. We are interested in the generalized mild solution { X(t, x) } t≥ of the semilinear stochastic partial differential equation {dX(t,x)=(AX(t,x)+F(X(t,x)))dt+CdW(t),t>0;X(0,x)=x∈X.We consider the transition semigroup defined by P(t)φ(x):=E[φ(X(t,x))],φ∈Bb(X),t≥0,x∈X.If O is an open set of X, we consider the Dirichlet semigroup defined by PO(t)φ(x):=E[φ(X(t,x))I{ω∈Ω:τx(ω)>t}],φ∈Bb(O),x∈O,t>0where τx is the exit time defined by τx=inf{s>0:X(s,x)∈Oc}.We study the infinitesimal generator of P(t), PO(t) in L2(X, ν) , L2(O, ν) respectively, where ν is the unique invariant measure of P(t).

L2 -theory for transition semigroups associated to dissipative systems

Bignamini, D. A.
2022-01-01

Abstract

Let X be a real separable Hilbert space. Let C be a linear, bounded, non-negative self-adjoint operator on X and let A be the infinitesimal generator of a strongly continuous semigroup in X. Let { W(t) } t≥ be a X-valued cylindrical Wiener process on a filtered (normal) probability space (Ω,F,{Ft}t≥0,P). Let F: Dom (F) ⊆ X→ X be a smooth enough function. We are interested in the generalized mild solution { X(t, x) } t≥ of the semilinear stochastic partial differential equation {dX(t,x)=(AX(t,x)+F(X(t,x)))dt+CdW(t),t>0;X(0,x)=x∈X.We consider the transition semigroup defined by P(t)φ(x):=E[φ(X(t,x))],φ∈Bb(X),t≥0,x∈X.If O is an open set of X, we consider the Dirichlet semigroup defined by PO(t)φ(x):=E[φ(X(t,x))I{ω∈Ω:τx(ω)>t}],φ∈Bb(O),x∈O,t>0where τx is the exit time defined by τx=inf{s>0:X(s,x)∈Oc}.We study the infinitesimal generator of P(t), PO(t) in L2(X, ν) , L2(O, ν) respectively, where ν is the unique invariant measure of P(t).
2022
2022
Dirichlet; Dissipative systems; Generalized mild solution; Iinvariant measure; Reaction–diffusion equations; Semilinear stochastic partial differential equations; Yosida approximating
Bignamini, D. A.
File in questo prodotto:
File Dimensione Formato  
Lsup2sup-theory-for-transition-semigroups-associated-to-dissipative-systemsStochastics-and-Partial-Differential-Equations-Analysis-and-Computations.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 833.52 kB
Formato Adobe PDF
833.52 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2148874
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact