Broad antibody sensitivity differences of hepatitis C virus (HCV) isolates and their ability to persist in the presence of neutralizing antibodies (NAbs) remain poorly understood. Here, we show that polymorphisms within glycoprotein E2, including hypervariable region 1 (HVR1) and antigenic site 412 (AS412), broadly affect NAb sensitivity by shifting global envelope protein conformation dynamics between theoretical “closed,” neutralizationresistant and “open,” neutralization-sensitive states. The conformational space of AS412 was skewed toward -hairpin–like conformations in closed states, which also depended on HVR1, assigning function to these enigmatic E2 regions. Scavenger receptor class B, type I entry dependency of HCV was associated with NAb resistance and correlated perfectly with decreased virus propensity to interact with HCV co-receptor CD81, indicating that decreased NAb sensitivity resulted in a more complex entry pathway. This link between global E1/E2 states and functionally distinct AS412 conformations has important implications for targeting AS412 in rational HCV vaccine designs

Global and local envelope protein dynamics of hepatitis C virus determine broad antibody sensitivity

Nicasio Mancini;
2020-01-01

Abstract

Broad antibody sensitivity differences of hepatitis C virus (HCV) isolates and their ability to persist in the presence of neutralizing antibodies (NAbs) remain poorly understood. Here, we show that polymorphisms within glycoprotein E2, including hypervariable region 1 (HVR1) and antigenic site 412 (AS412), broadly affect NAb sensitivity by shifting global envelope protein conformation dynamics between theoretical “closed,” neutralizationresistant and “open,” neutralization-sensitive states. The conformational space of AS412 was skewed toward -hairpin–like conformations in closed states, which also depended on HVR1, assigning function to these enigmatic E2 regions. Scavenger receptor class B, type I entry dependency of HCV was associated with NAb resistance and correlated perfectly with decreased virus propensity to interact with HCV co-receptor CD81, indicating that decreased NAb sensitivity resulted in a more complex entry pathway. This link between global E1/E2 states and functionally distinct AS412 conformations has important implications for targeting AS412 in rational HCV vaccine designs
2020
2020
H Augestad, Elias; Castelli, Matteo; Clementi, Nicola; J Ströh, Luisa; Krey, Thomas; Burioni, Roberto; Mancini, Nicasio; Bukh, Jens; Prentoe, Jannick
File in questo prodotto:
File Dimensione Formato  
SCIENCE ADVANCES@.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.17 MB
Formato Adobe PDF
3.17 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2149028
Citazioni
  • ???jsp.display-item.citation.pmc??? 16
  • Scopus 26
  • ???jsp.display-item.citation.isi??? 26
social impact