Electric vehicles are expected to greatly increase their market share in the near future. Their impact on the energy system will depend also on the way electricity will be generated. Renewable energy sources and intelligent control strategies will offer relevant solutions to mitigate that impact. In this paper we study the combination of photovoltaic energy and electric vehicles under uncontrolled charging regime and under the application of smart charging and vehicle-to-grid strategies. The analysis assumes different levels of photovoltaic generation and different penetrations of the electric vehicles. The assignment is carried out by means of an open source linear optimization model named EVLS, which simulates the interactions between the electric vehicles and the upstream energy system by considering market, technical and behavioral constraints. The results show that a high photovoltaic capacity could cover only a small portion of the transportation demand, if the charge is uncontrolled. In such a case, the non-photovoltaic generation would be required to severely ramp up in the late afternoon hours. An intelligent control of the charge could better accommodate the photovoltaic energy and reduce the ramps. The vehicle-to-grid could additionally help harnessing the photovoltaic energy to shave the peaks of the conventional load profile.

Combining photovoltaic energy with electric vehicles, smart charging and vehicle-to-grid

FATTORI, FABRIZIO
;
2014-01-01

Abstract

Electric vehicles are expected to greatly increase their market share in the near future. Their impact on the energy system will depend also on the way electricity will be generated. Renewable energy sources and intelligent control strategies will offer relevant solutions to mitigate that impact. In this paper we study the combination of photovoltaic energy and electric vehicles under uncontrolled charging regime and under the application of smart charging and vehicle-to-grid strategies. The analysis assumes different levels of photovoltaic generation and different penetrations of the electric vehicles. The assignment is carried out by means of an open source linear optimization model named EVLS, which simulates the interactions between the electric vehicles and the upstream energy system by considering market, technical and behavioral constraints. The results show that a high photovoltaic capacity could cover only a small portion of the transportation demand, if the charge is uncontrolled. In such a case, the non-photovoltaic generation would be required to severely ramp up in the late afternoon hours. An intelligent control of the charge could better accommodate the photovoltaic energy and reduce the ramps. The vehicle-to-grid could additionally help harnessing the photovoltaic energy to shave the peaks of the conventional load profile.
2014
2014
http://www.sciencedirect.com/science/article/pii/S0038092X14004745
Electric vehicle; Energy system model; Linear optimization; Photovoltaic; Smart charging; Vehicle-to-grid
Fattori, Fabrizio; Anglani, Norma; G., Muliere
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0038092X14004745-main.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.41 MB
Formato Adobe PDF
1.41 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2149113
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 67
social impact