This work considers some theoretical and computational aspects of the recent paper (Buccini et al., 2021), whose aim was to relax the convergence conditions in a previous work by Donatelli and Hanke, and thereby make the iterative method discussed in the latter work applicable to a larger class of problems. This aim was achieved in the sense that the iterative method presented convergences for a larger class of problems. However, while the analysis presented is correct, it does not establish the superior behavior of the iterative method described. The present note describes a slight modification of the analysis that establishes the superiority of the iterative method. The new analysis allows to discuss the behavior of the algorithm when varying the involved parameters, which is also useful for their empirical estimation.(c) 2022 Elsevier B.V. All rights reserved.

Theoretical and numerical aspects of a non-stationary preconditioned iterative method for linear discrete ill-posed problems

Buccini A.
;
Donatelli M.;
2023-01-01

Abstract

This work considers some theoretical and computational aspects of the recent paper (Buccini et al., 2021), whose aim was to relax the convergence conditions in a previous work by Donatelli and Hanke, and thereby make the iterative method discussed in the latter work applicable to a larger class of problems. This aim was achieved in the sense that the iterative method presented convergences for a larger class of problems. However, while the analysis presented is correct, it does not establish the superior behavior of the iterative method described. The present note describes a slight modification of the analysis that establishes the superiority of the iterative method. The new analysis allows to discuss the behavior of the algorithm when varying the involved parameters, which is also useful for their empirical estimation.(c) 2022 Elsevier B.V. All rights reserved.
2023
Discrete ill-posed inverse problems; Iterated Tikhonov method; Spectral equivalence
Buccini, A.; Donatelli, M.; Reichel, L.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2149731
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact