This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south-north transect of deep boreholes from Sierra Nevada in Spain (37°N) to Svalbard (78°N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 °C on Svalbard and 0.4 °C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 °C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.

Twenty years of European mountain permafrost dynamics-the PACE legacy

Guglielmin M.;
2020-01-01

Abstract

This paper reviews and analyses the past 20 years of change and variability of European mountain permafrost in response to climate change based on time series of ground temperatures along a south-north transect of deep boreholes from Sierra Nevada in Spain (37°N) to Svalbard (78°N), established between 1998 and 2000 during the EU-funded PACE (Permafrost and Climate in Europe) project. In Sierra Nevada (at the Veleta Peak), no permafrost is encountered. All other boreholes are drilled in permafrost. Results show that permafrost warmed at all sites down to depths of 50 m or more. The warming at a 20 m depth varied between 1.5 °C on Svalbard and 0.4 °C in the Alps. Warming rates tend to be less pronounced in the warm permafrost boreholes, which is partly due to latent heat effects at more ice-rich sites with ground temperatures close to 0 °C. At most sites, the air temperature at 2 m height showed a smaller increase than the near-ground-surface temperature, leading to an increase of surface offsets (SOs). The active layer thickness (ALT) increased at all sites between c. 10% and 200% with respect to the start of the study period, with the largest changes observed in the European Alps. Multi-temporal electrical resistivity tomography (ERT) carried out at six sites showed a decrease in electrical resistivity, independently supporting our conclusion of ground ice degradation and higher unfrozen water content.
2020
2020
climate change; Europe; monitoring; mountain permafrost; PACE; recent warming
Etzelmuller, B.; Guglielmin, M.; Hauck, C.; Hilbich, C.; Hoelzle, M.; Isaksen, K.; Noetzli, J.; Oliva, M.; Ramos, M.
File in questo prodotto:
File Dimensione Formato  
Twenty-years-of-European-mountain-permafrost-dynamicsthe-PACE-legacyEnvironmental-Research-Letters.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.52 MB
Formato Adobe PDF
3.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2151838
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 64
  • ???jsp.display-item.citation.isi??? 62
social impact