For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geographical characteristics, and viticultural and winemaking practices, including the fermentative process. A comprehensive characterization of flavour compounds by headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometric analysis is often needed in order to ascertain the quality of wine. HS-SPME requires a proper optimization that can be achieved through an adequate experimental design. Here, a HS-SPME/GC-MS based method was developed to investigate the volatile compounds of wine samples obtained by laboratory-scale fermentations. This was performed by inoculating a commercial Saccharomyces cerevisiae strain, which is used both as single starter and as mixed starter, with an indigenous Hanseniaspora osmophila strain. The experimental conditions of HS-SPME (extraction temperature and time) were optimized by applying a face-centred composite experimental design. Up to 95% of the total variance was explained by the proposed model. The optimized method allowed us to confirm the usefulness of combining the inoculation of grapes with selected yeast strains in co-culture situations in order to improve the wine bouquet.

An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis

Giussani B.;
2023-01-01

Abstract

For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geographical characteristics, and viticultural and winemaking practices, including the fermentative process. A comprehensive characterization of flavour compounds by headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometric analysis is often needed in order to ascertain the quality of wine. HS-SPME requires a proper optimization that can be achieved through an adequate experimental design. Here, a HS-SPME/GC-MS based method was developed to investigate the volatile compounds of wine samples obtained by laboratory-scale fermentations. This was performed by inoculating a commercial Saccharomyces cerevisiae strain, which is used both as single starter and as mixed starter, with an indigenous Hanseniaspora osmophila strain. The experimental conditions of HS-SPME (extraction temperature and time) were optimized by applying a face-centred composite experimental design. Up to 95% of the total variance was explained by the proposed model. The optimized method allowed us to confirm the usefulness of combining the inoculation of grapes with selected yeast strains in co-culture situations in order to improve the wine bouquet.
2023
2023
https://www.mdpi.com/editorial_process
experimental design; Hanseniaspora osmophila; HS-SPME; Saccharomyces cerevisiae; wine aroma
Tesoro, C.; Acquavia, M. A.; Giussani, B.; Bianco, G.; Pascale, R.; Lelario, F.; Ciriello, R.; Capece, A.; Pietrafesa, R.; Siesto, G.; Di Capua, A....espandi
File in questo prodotto:
File Dimensione Formato  
2023_applsci_DoE.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.36 MB
Formato Adobe PDF
1.36 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2153591
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact