For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geographical characteristics, and viticultural and winemaking practices, including the fermentative process. A comprehensive characterization of flavour compounds by headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometric analysis is often needed in order to ascertain the quality of wine. HS-SPME requires a proper optimization that can be achieved through an adequate experimental design. Here, a HS-SPME/GC-MS based method was developed to investigate the volatile compounds of wine samples obtained by laboratory-scale fermentations. This was performed by inoculating a commercial Saccharomyces cerevisiae strain, which is used both as single starter and as mixed starter, with an indigenous Hanseniaspora osmophila strain. The experimental conditions of HS-SPME (extraction temperature and time) were optimized by applying a face-centred composite experimental design. Up to 95% of the total variance was explained by the proposed model. The optimized method allowed us to confirm the usefulness of combining the inoculation of grapes with selected yeast strains in co-culture situations in order to improve the wine bouquet.
An Interplay between a Face-Centred Composite Experimental Design and Solid-Phase Microextraction for Wine Aroma GC/MS Analysis
Giussani B.;
2023-01-01
Abstract
For oenological products, most of the intrinsic and extrinsic drivers of perceived quality are associated with specific aromatic profiles. Aromatic diversity has been recognized as a central element in perceived quality as it is able to transmit the complex interactions between grape variety, geographical characteristics, and viticultural and winemaking practices, including the fermentative process. A comprehensive characterization of flavour compounds by headspace solid-phase microextraction (HS-SPME) and gas chromatography coupled to mass spectrometric analysis is often needed in order to ascertain the quality of wine. HS-SPME requires a proper optimization that can be achieved through an adequate experimental design. Here, a HS-SPME/GC-MS based method was developed to investigate the volatile compounds of wine samples obtained by laboratory-scale fermentations. This was performed by inoculating a commercial Saccharomyces cerevisiae strain, which is used both as single starter and as mixed starter, with an indigenous Hanseniaspora osmophila strain. The experimental conditions of HS-SPME (extraction temperature and time) were optimized by applying a face-centred composite experimental design. Up to 95% of the total variance was explained by the proposed model. The optimized method allowed us to confirm the usefulness of combining the inoculation of grapes with selected yeast strains in co-culture situations in order to improve the wine bouquet.File | Dimensione | Formato | |
---|---|---|---|
2023_applsci_DoE.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.36 MB
Formato
Adobe PDF
|
1.36 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.