Since the publication of Paleoseismology (2nd Edition) in 2009, there has been no comprehensive survey of new trends in Quaternary tectonics. This paper seeks to remedy that situation, by describing the new technologies and interpretations that arose over the past decade. The major technological advances have been in remote sending, e.g., unpiloted aerial vehicles (drones); airborne laser scanning (lidar); terrestrial laser scanning; 3D topographic surveys from Structure-from-Motion; and satellite geodesy such as D-InSAR. Advances have also been made in dating Quaternary deposits, including single-grain luminescence dating (in the laboratory), and portable optically-stimulated luminescence dating (in the field). Geophysical surveys are now a common component of neotectonic investigations, permitting a more formal, 3D integration of subsurface data with surface data. These techniques have lowered the threshold of recognition to smaller and smaller earthquakes, and allowed detection of off-fault deformation such as distributed faulting and folding. We are now collecting so much data that quality control of coseismic field measurements has become an issue, especially when assembling data sets made of old and new data. Soon this data problem will force a reassessment of our time-honored interpretive paradigms, most of which originated in the 1970s and 80s in the early days of neotectonics.
New developments in onshore paleoseismic methods, and their impact on Quaternary tectonic studies
Ferrario F.;Livio F.;
2023-01-01
Abstract
Since the publication of Paleoseismology (2nd Edition) in 2009, there has been no comprehensive survey of new trends in Quaternary tectonics. This paper seeks to remedy that situation, by describing the new technologies and interpretations that arose over the past decade. The major technological advances have been in remote sending, e.g., unpiloted aerial vehicles (drones); airborne laser scanning (lidar); terrestrial laser scanning; 3D topographic surveys from Structure-from-Motion; and satellite geodesy such as D-InSAR. Advances have also been made in dating Quaternary deposits, including single-grain luminescence dating (in the laboratory), and portable optically-stimulated luminescence dating (in the field). Geophysical surveys are now a common component of neotectonic investigations, permitting a more formal, 3D integration of subsurface data with surface data. These techniques have lowered the threshold of recognition to smaller and smaller earthquakes, and allowed detection of off-fault deformation such as distributed faulting and folding. We are now collecting so much data that quality control of coseismic field measurements has become an issue, especially when assembling data sets made of old and new data. Soon this data problem will force a reassessment of our time-honored interpretive paradigms, most of which originated in the 1970s and 80s in the early days of neotectonics.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1040618223000939.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
1.18 MB
Formato
Adobe PDF
|
1.18 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.