Precast construction employing modular 3D cells for housing was developed alongside frame and panel buildings since the end of WWII, mainly in Europe. This technology combined with in-situ concreting of wet joints was employed with a certain success throughout Europe up to the ‘80s, after which it became progressively less popular due to the difficulties in handling transportation (both lifting and shipping due to the large cell dimensions) and limited benefits in construction due to the partial prefabrication, framing its modern application in many countries to relatively small-size building components, such as kitchen/bathroom or service blocks. Thanks to the recent innovations of the precast concrete technology (both in production and structural connections), combined with the market evolution, this technology is nowadays experiencing a renovated interest for mid- and high-rise buildings, especially in Asia, where rapid dry or semi-dry assemblage of the cells ensures the full finishing of the units in factory, and the full exploitation of the benefits induced by the prefabrication process. As a matter of fact, the current literature regarding the structural behaviour of buildings employing this technology is lacking from a robust assessment, especially concerning their seismic performance. As a preliminary attempt to fill this gap, this paper presents the results of traditional seismic analysis with response spectrum carried out on a representative large residential building designed having 6, 12, 18 and 24 storeys modelled with shell elements and spring connections, analysing the limit PGAs associated to each typology and commenting the role of different connection devices and the possible design implications.
Structural assessment of modular precast 3D cell mid- to high-rise buildings with different connections
Dal Lago B.
;Papa E.
2023-01-01
Abstract
Precast construction employing modular 3D cells for housing was developed alongside frame and panel buildings since the end of WWII, mainly in Europe. This technology combined with in-situ concreting of wet joints was employed with a certain success throughout Europe up to the ‘80s, after which it became progressively less popular due to the difficulties in handling transportation (both lifting and shipping due to the large cell dimensions) and limited benefits in construction due to the partial prefabrication, framing its modern application in many countries to relatively small-size building components, such as kitchen/bathroom or service blocks. Thanks to the recent innovations of the precast concrete technology (both in production and structural connections), combined with the market evolution, this technology is nowadays experiencing a renovated interest for mid- and high-rise buildings, especially in Asia, where rapid dry or semi-dry assemblage of the cells ensures the full finishing of the units in factory, and the full exploitation of the benefits induced by the prefabrication process. As a matter of fact, the current literature regarding the structural behaviour of buildings employing this technology is lacking from a robust assessment, especially concerning their seismic performance. As a preliminary attempt to fill this gap, this paper presents the results of traditional seismic analysis with response spectrum carried out on a representative large residential building designed having 6, 12, 18 and 24 storeys modelled with shell elements and spring connections, analysing the limit PGAs associated to each typology and commenting the role of different connection devices and the possible design implications.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2452321623001452-main.pdf
accesso aperto
Descrizione: paper
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.66 MB
Formato
Adobe PDF
|
2.66 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.