We put forward the idea of lattice quantum magnetometry, i.e., quantum sensing of magnetic fields by a charged (spinless) particle placed on a finite two-dimensional lattice. In particular, we focus on the detection of a locally static transverse magnetic field, either homogeneous or inhomogeneous, by performing ground-state measurements. The system turns out to be of interest as a quantum magnetometer, since it provides non-negligible quantum Fisher information (QFI) in a large range of configurations. Moreover, the QFI shows some relevant peaks, determined by the spectral properties of the Hamiltonian, suggesting that certain values of the magnetic fields may be estimated better than others, depending on the value of other tunable parameters. We also assess the performance of coarse-grained position measurement, showing that it may be employed to realize nearly optimal estimation strategies.

Lattice quantum magnetometry

Razzoli L.;
2019-01-01

Abstract

We put forward the idea of lattice quantum magnetometry, i.e., quantum sensing of magnetic fields by a charged (spinless) particle placed on a finite two-dimensional lattice. In particular, we focus on the detection of a locally static transverse magnetic field, either homogeneous or inhomogeneous, by performing ground-state measurements. The system turns out to be of interest as a quantum magnetometer, since it provides non-negligible quantum Fisher information (QFI) in a large range of configurations. Moreover, the QFI shows some relevant peaks, determined by the spectral properties of the Hamiltonian, suggesting that certain values of the magnetic fields may be estimated better than others, depending on the value of other tunable parameters. We also assess the performance of coarse-grained position measurement, showing that it may be employed to realize nearly optimal estimation strategies.
2019
Razzoli, L.; Ghirardi, L.; Siloi, I.; Bordone, P.; Paris, M. G. A.
File in questo prodotto:
File Dimensione Formato  
PhysRevA.99.062330.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.21 MB
Formato Adobe PDF
1.21 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2157054
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 16
social impact