We study the concentration of measure in metric-measurable (mm)-spaces. We define the notion of concentration locus of a flag sequence of metric-measurable (mm)-spaces. Some examples of infinite group action on an infinite dimensional compact and non-compact manifold show the role played by the trajectory of concentration locus. We also provide some applications in physics, which emphasize the role of concentration of measure in gravitational effects.

Concentration of measure for classical Lie groups

Cacciatori S. L.
;
2023-01-01

Abstract

We study the concentration of measure in metric-measurable (mm)-spaces. We define the notion of concentration locus of a flag sequence of metric-measurable (mm)-spaces. Some examples of infinite group action on an infinite dimensional compact and non-compact manifold show the role played by the trajectory of concentration locus. We also provide some applications in physics, which emphasize the role of concentration of measure in gravitational effects.
2023
2023
Compact Lie groups; Concentration of measure; Metric measurable spaces; Riemann geometry; Topological dynamics
Cacciatori, S. L.; Ursino, P.
File in questo prodotto:
File Dimensione Formato  
FinalVersionConcentration030422Revised.pdf

non disponibili

Tipologia: Documento in Pre-print
Licenza: DRM non definito
Dimensione 349.44 kB
Formato Adobe PDF
349.44 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2158515
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact