For a prime number ℓ we introduce and study oriented right-angled Artin pro-ℓ groups GΓ,λ(oriented pro-ℓ RAAGs for short) associated to a finite oriented graph Γ and a continuous group homomorphism λ:Zℓ→Z×ℓ. We show that an oriented pro-ℓ RAAG GΓ,λ is a Bloch-Kato pro-ℓ group if, and only if, (GΓ,λ,θΓ,λ) is an oriented pro-ℓ group of elementary type generalizing a recent result of I. Snopche and P. Zalesskii. Here θΓ,λ:GΓ,λ→Z×p denotes the canonical ℓ-orientation on GΓ,λ. We invest some effort in order to show that oriented right-angled Artin pro-ℓ groups share many properties with right-angled Artin pro-ℓ-groups or even discrete RAAG's, e.g., if Γ is a specially oriented chordal graph, then GΓ,λ is coherent, generalizing a result of C. Droms. Moreover, in this case (GΓ,λ,θΓ,λ) has the Positselski-Bogomolov property generalizing a result of H. Servatius, C. Droms and B. Servatius for discrete RAAG's. If Γ is a specially oriented chordal graph and Im(λ)⊆1+4Z2 in case that ℓ=2, then H∙(GΓ,λ,Fℓ)≃Λ∙(Γ¨op) generalizing a well known result of M. Salvetti.

Oriented right-angled Artin pro-l groups and maximal pro-l Galois groups

Claudio Quadrelli
;
2024-01-01

Abstract

For a prime number ℓ we introduce and study oriented right-angled Artin pro-ℓ groups GΓ,λ(oriented pro-ℓ RAAGs for short) associated to a finite oriented graph Γ and a continuous group homomorphism λ:Zℓ→Z×ℓ. We show that an oriented pro-ℓ RAAG GΓ,λ is a Bloch-Kato pro-ℓ group if, and only if, (GΓ,λ,θΓ,λ) is an oriented pro-ℓ group of elementary type generalizing a recent result of I. Snopche and P. Zalesskii. Here θΓ,λ:GΓ,λ→Z×p denotes the canonical ℓ-orientation on GΓ,λ. We invest some effort in order to show that oriented right-angled Artin pro-ℓ groups share many properties with right-angled Artin pro-ℓ-groups or even discrete RAAG's, e.g., if Γ is a specially oriented chordal graph, then GΓ,λ is coherent, generalizing a result of C. Droms. Moreover, in this case (GΓ,λ,θΓ,λ) has the Positselski-Bogomolov property generalizing a result of H. Servatius, C. Droms and B. Servatius for discrete RAAG's. If Γ is a specially oriented chordal graph and Im(λ)⊆1+4Z2 in case that ℓ=2, then H∙(GΓ,λ,Fℓ)≃Λ∙(Γ¨op) generalizing a well known result of M. Salvetti.
2024
2023
https://track.smtpsendmail.com/9032119/c?p=u0bxBbZZ4chC-v8zab65DKwz4niZ-DCf1LqO_W0dCi5G_rqKqp0sTqcDMvhSnIgzSf2BqRMCiyQpxHrG1yWI3parutuHZEUevqmyzIPvVqdiJQJV1t6nI_LaZ9QEmW4XeMLSG5WWFEpaCG3lBgN8O7aDbd1_gVRA6_lwsZkVEyavealbEK8KeSxrpu4r0QLLjB6A3dsjmkDPgMwP6kAM_vyJgyvdY2tX_vWGk166x53NsxNkn3Um-4KXWx9X_crgcAJEGPLfoYOvhcrNnhJU-fbvDKN0anFy7jSFJcq6Fgg=
Maximal pro-ℓ Galois groups, Galois cohomology, Bloch-Kato pro-ℓ groups, oriented pro-ℓ groups, the Bogomolov-Positselski property, right-angled Artin pro-ℓ groups.
Quadrelli, Claudio; Blumer, Simone; Weigel, Thomas S.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2161851
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact