It is evident from many recent papers that release of colored wastewater into the environment is source of pollution and this is a problem that particularly affect textile, dyeing and food industries. The review: (i) presents an analysis of various mechanisms involved in the different processes for color removal; (ii) describes conveniences and disadvantages that may exist in adopting one type of treatment in spite of another; (iii) reports the results of approximately 180 experimental tests. Both examples of treatments already widely applied to the real scale and still in the experimental phase are reported. This work focuses on different types of chemical/physical, chemical, electrochemical and biological processes applied in the field of color removal from industrial wastewater. Common chemical/physical treatments such as coagulation/flocculation, adsorption and membrane filtration as well as chemical-type processes are discussed, both those that exploit the traditional oxidizing chemical agents such as Ozone, H2O2 and reactive based on chlorine and those based on the principle of advanced chemical oxidation. In particular, both Hydroxyl radical based Advanced Oxidation Processes (AOPs) and Sulfate radical based AOPs are reported. The most commonly used Electrochemical processes for the removal of color are also presented as well as biological treatments. Based on more than 200 papers, this review provides important information on the use, effectiveness, advantages and downsides of the various treatments aimed at removing the color from the wastewater with a look at the technologies still under development.

Treatments for color removal from wastewater: state of the art

Carnevale Miino M.
;
2019-01-01

Abstract

It is evident from many recent papers that release of colored wastewater into the environment is source of pollution and this is a problem that particularly affect textile, dyeing and food industries. The review: (i) presents an analysis of various mechanisms involved in the different processes for color removal; (ii) describes conveniences and disadvantages that may exist in adopting one type of treatment in spite of another; (iii) reports the results of approximately 180 experimental tests. Both examples of treatments already widely applied to the real scale and still in the experimental phase are reported. This work focuses on different types of chemical/physical, chemical, electrochemical and biological processes applied in the field of color removal from industrial wastewater. Common chemical/physical treatments such as coagulation/flocculation, adsorption and membrane filtration as well as chemical-type processes are discussed, both those that exploit the traditional oxidizing chemical agents such as Ozone, H2O2 and reactive based on chlorine and those based on the principle of advanced chemical oxidation. In particular, both Hydroxyl radical based Advanced Oxidation Processes (AOPs) and Sulfate radical based AOPs are reported. The most commonly used Electrochemical processes for the removal of color are also presented as well as biological treatments. Based on more than 200 papers, this review provides important information on the use, effectiveness, advantages and downsides of the various treatments aimed at removing the color from the wastewater with a look at the technologies still under development.
2019
2019
https://doi.org/10.1016/j.jenvman.2018.11.094
Advanced oxidation processes; Color removal; Dye degradation; Electrochemical processes; Textile wastewater; Color; Flocculation; Hydrogen Peroxide; Industrial Waste; Oxidation-Reduction; Textile Industry; Waste Disposal; Fluid; Waste Water; Ozone; Water Pollutants; Chemical
Collivignarelli, M. C.; Abba, A.; Carnevale Miino, M.; Damiani, S.
File in questo prodotto:
File Dimensione Formato  
Treatments for color removal.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 914.54 kB
Formato Adobe PDF
914.54 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2162311
Citazioni
  • ???jsp.display-item.citation.pmc??? 30
  • Scopus 275
  • ???jsp.display-item.citation.isi??? 246
social impact