We construct a new version of q-Jakimovski-Leviatan type integral operators and show that set of all continuous functions f defined on [0, ∞) are uniformly approximated by our new operators. Finally we construct the Stancu type operators and obtain approximation properties in weighted spaces. Moreover, with the aid of modulus of continuity we discuss the rate of convergence, Lipschitz type maximal approximation and some direct theorems.

Approximation results for Beta Jakimovski-Leviatan type operators via q-analogue

Serra Capizzano S.;
2023-01-01

Abstract

We construct a new version of q-Jakimovski-Leviatan type integral operators and show that set of all continuous functions f defined on [0, ∞) are uniformly approximated by our new operators. Finally we construct the Stancu type operators and obtain approximation properties in weighted spaces. Moreover, with the aid of modulus of continuity we discuss the rate of convergence, Lipschitz type maximal approximation and some direct theorems.
2023
Appell polynomials; Jakimovski-Leviatan operators; Korovkin’s theorem; modulus of continuity; q-Appell polynomials
Nasiruzzaman, M.; Tom, M. A. O.; Serra Capizzano, S.; Rao, N.; Ayman-Mursaleen, M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2164423
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact