Per- and polyfluoroalkyl substances (PFASs) have been under intense investigation by the scientific community due to their persistence in the environment and potentially hazardous effects on living organisms. In order to tackle the presence of these compounds in water, to date, the research has been strongly focused on the evaluation of the effectiveness of different types of technologies. Considering the extreme complexity of the matter of PFASs and our relatively low knowledge in this topic, the following question arises: is the “chemical only” approach that is followed for evaluating the effectiveness of technologies for PFAS removal from water reliable enough? In this work, some limitations of the present approach are discussed, highlighting the reasons why it cannot be considered a reliable tool to correctly estimate the effectiveness of technology when referring to emerging compounds such as PFASs. Bioassays can play a key role in moving towards an integrated bio-chemical evaluation (chemical analysis and ecotoxicological evaluation), which is strongly encouraged. This represents the only way to completely characterize a water matrix and fully evaluate the impact of technologies when dealing with micropollutants in water, such as PFASs. Future research should focus on defining an optimal battery of bioassays that specifically fit to best represent changes in water quality in terms of short- and long-term impacts on living organisms.

Evaluation of the Effectiveness of Treatments to Remove Per- and Polyfluoroalkyl Substances from Water—Are We Using the Right Approach? Proposal of a Paradigm Shift from “Chemical Only” towards an Integrated Bio-Chemical Assessment

Carnevale Miino M.
;
2023-01-01

Abstract

Per- and polyfluoroalkyl substances (PFASs) have been under intense investigation by the scientific community due to their persistence in the environment and potentially hazardous effects on living organisms. In order to tackle the presence of these compounds in water, to date, the research has been strongly focused on the evaluation of the effectiveness of different types of technologies. Considering the extreme complexity of the matter of PFASs and our relatively low knowledge in this topic, the following question arises: is the “chemical only” approach that is followed for evaluating the effectiveness of technologies for PFAS removal from water reliable enough? In this work, some limitations of the present approach are discussed, highlighting the reasons why it cannot be considered a reliable tool to correctly estimate the effectiveness of technology when referring to emerging compounds such as PFASs. Bioassays can play a key role in moving towards an integrated bio-chemical evaluation (chemical analysis and ecotoxicological evaluation), which is strongly encouraged. This represents the only way to completely characterize a water matrix and fully evaluate the impact of technologies when dealing with micropollutants in water, such as PFASs. Future research should focus on defining an optimal battery of bioassays that specifically fit to best represent changes in water quality in terms of short- and long-term impacts on living organisms.
2023
2023
https://doi.org/10.3390/cleantechnol5040060
bioassays; ecotoxicology; emerging contaminants; persistent compounds; PFAS; toxicity
Carnevale Miino, M.; Halesova, T.; Macsek, T.; Racek, J.; Hlavinek, P.
File in questo prodotto:
File Dimensione Formato  
Evaluation of the Effectiveness of Treatments.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 701.77 kB
Formato Adobe PDF
701.77 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2166032
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact