Mercury is a pervasive and concerning pollutant due to its toxicity, mobility, and tendency to biomagnify in aquatic and terrestrial ecosystems. Speciation analysis is crucial to assess exposure and risks associated with mercury, as different mercury species exhibit varying properties and toxicities. This study aimed at developing a selective detection method for organic mercury species in a non-invasive biomonitoring matrix like human hair. The method is based on frontal chromatography (FC) in combination with inductively coupled plasma mass spectrometry (ICP-MS), using a low pressure, homemade, anion exchange column inserted in a standard ICP-MS introduction system, without requiring high-performance liquid chromatography (HPLC) hyphenation. In addition to the extreme simplification and cost reduction of the chromatographic equipment, the proposed protocol involves a fast, streamlined and fully integrated sample preparation process (in contrast to existing methods): the optimized procedure features a 15-min ultrasonic assisted extraction procedure and 5 min analysis time. Consequently, up to 100 samples could be analyzed daily, making the method highly productive and suitable for large-scale screening programs in public and environmental health. Moreover, the optimized procedure enables a limit of detection (LOD) of 5.5 μg/kg for a 10 mg hair microsample. All these features undeniably demonstrate a significant advancement in routine biomonitoring practices. To provide additional evidence, the method was applied to forty-nine human hair samples from individuals with varying dietary habits successfully finding a clear correlation between methylmercury levels (ranging from 0.02 to 3.2 mg/kg) in hair and fish consumption, in line with previous literature data.
A high-throughput, straightforward procedure for biomonitoring organomercury species in human hair
Spanu D.Primo
;Recchia S.;Dossi C.;Monticelli D.
Ultimo
2024-01-01
Abstract
Mercury is a pervasive and concerning pollutant due to its toxicity, mobility, and tendency to biomagnify in aquatic and terrestrial ecosystems. Speciation analysis is crucial to assess exposure and risks associated with mercury, as different mercury species exhibit varying properties and toxicities. This study aimed at developing a selective detection method for organic mercury species in a non-invasive biomonitoring matrix like human hair. The method is based on frontal chromatography (FC) in combination with inductively coupled plasma mass spectrometry (ICP-MS), using a low pressure, homemade, anion exchange column inserted in a standard ICP-MS introduction system, without requiring high-performance liquid chromatography (HPLC) hyphenation. In addition to the extreme simplification and cost reduction of the chromatographic equipment, the proposed protocol involves a fast, streamlined and fully integrated sample preparation process (in contrast to existing methods): the optimized procedure features a 15-min ultrasonic assisted extraction procedure and 5 min analysis time. Consequently, up to 100 samples could be analyzed daily, making the method highly productive and suitable for large-scale screening programs in public and environmental health. Moreover, the optimized procedure enables a limit of detection (LOD) of 5.5 μg/kg for a 10 mg hair microsample. All these features undeniably demonstrate a significant advancement in routine biomonitoring practices. To provide additional evidence, the method was applied to forty-nine human hair samples from individuals with varying dietary habits successfully finding a clear correlation between methylmercury levels (ranging from 0.02 to 3.2 mg/kg) in hair and fish consumption, in line with previous literature data.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S0039914023013632-main.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
3.15 MB
Formato
Adobe PDF
|
3.15 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.