In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold $M$ with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on $M$ by exploiting a form of the Ahlfors-Khas'minskii duality in nonlinear potential theory.

Bernstein and Half-Space Properties for Minimal Graphs Under Ricci Lower Bounds

Magliaro, Marco;
2022-01-01

Abstract

In this paper, we prove a new gradient estimate for minimal graphs defined on domains of a complete manifold $M$ with Ricci curvature bounded from below. This enables us to show that positive, entire minimal graphs on manifolds with non-negative Ricci curvature are constant and that complete, parabolic manifolds with Ricci curvature bounded from below have the half-space property. We avoid the need of sectional curvature bounds on $M$ by exploiting a form of the Ahlfors-Khas'minskii duality in nonlinear potential theory.
2022
2022
Colombo, Giulio; Magliaro, Marco; Mari, Luciano; Rigoli, Marco
File in questo prodotto:
File Dimensione Formato  
rnab342.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 357.07 kB
Formato Adobe PDF
357.07 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2166334
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact