Earlier results show that the N=1/2 supersymmetric path integral Jg on a closed even dimensional Riemannian spin manifold (X,g) can be constructed in a mathematically rigorous way via Chen differential forms and techniques from noncommutative geometry, if one considers Jg as a current on the loop space LX, that is, as a linear form on differential forms on LX. This construction admits a Duistermaat-Heckman localization formula. In this note, fixing a topological spin structure on X, we prove that any smooth family g•=(gt)t∈[0,1] of Riemannian metrics on X canonically induces a Chern-Simons current Cgjavax.xml.bind.JAXBElement@24e357bb which fits into a transgression formula for the supersymmetric path integral. In particular, this result entails that the supersymmetric path integral induces a differential topological invariant on X, which essentially stems from the Aˆ-genus of X.

A Chern-Simons transgression formula for supersymmetric path integrals on spin manifolds

Cacciatori S. L.
;
2024-01-01

Abstract

Earlier results show that the N=1/2 supersymmetric path integral Jg on a closed even dimensional Riemannian spin manifold (X,g) can be constructed in a mathematically rigorous way via Chen differential forms and techniques from noncommutative geometry, if one considers Jg as a current on the loop space LX, that is, as a linear form on differential forms on LX. This construction admits a Duistermaat-Heckman localization formula. In this note, fixing a topological spin structure on X, we prove that any smooth family g•=(gt)t∈[0,1] of Riemannian metrics on X canonically induces a Chern-Simons current Cgjavax.xml.bind.JAXBElement@24e357bb which fits into a transgression formula for the supersymmetric path integral. In particular, this result entails that the supersymmetric path integral induces a differential topological invariant on X, which essentially stems from the Aˆ-genus of X.
2024
2023
https://www.sciencedirect.com/science/article/pii/S0393044023002930
Currents; Duistermaat-Heckman localization; Loop spaces; Spin manifold; Supersymmetric path integral; Transgression formula
Boldt, S.; Cacciatori, S. L.; Guneysu, B.
File in questo prodotto:
File Dimensione Formato  
BatSebSer.pdf

accesso aperto

Tipologia: Documento in Pre-print
Licenza: Non specificato
Dimensione 415.13 kB
Formato Adobe PDF
415.13 kB Adobe PDF Visualizza/Apri
1-s2.0-S0393044023002930-main.pdf

non disponibili

Descrizione: articolo
Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 321.05 kB
Formato Adobe PDF
321.05 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2166825
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact