In this paper we provide a framework to study the network topology of generalized forecast error variance decomposition (GFEVD) derived from multi-country, multi-variable time series models. Our dynamic variance decomposition network is based on a Bayesian Global Vector Autoregressive (GVAR) model, a suitable macroeconometric method to consider simultaneous multi-level interdependencies across variables. We demonstrate the usefulness of our methodology to analyze the network structure of shock propagation in longitudinal time series and, in particular: (a) the shortest paths of contagion; (b) the clusters of shock transmission; (c) the role of nodes in the risk transmission channels. We illustrate our method through an empirical application to a set of 12 European countries’ Industrial Production, Retail Trade and Economic Sentiment indices over the period 01/2000–11/2021

The topological structure of panel variance decomposition networks

Pagnottoni, Paolo
2024-01-01

Abstract

In this paper we provide a framework to study the network topology of generalized forecast error variance decomposition (GFEVD) derived from multi-country, multi-variable time series models. Our dynamic variance decomposition network is based on a Bayesian Global Vector Autoregressive (GVAR) model, a suitable macroeconometric method to consider simultaneous multi-level interdependencies across variables. We demonstrate the usefulness of our methodology to analyze the network structure of shock propagation in longitudinal time series and, in particular: (a) the shortest paths of contagion; (b) the clusters of shock transmission; (c) the role of nodes in the risk transmission channels. We illustrate our method through an empirical application to a set of 12 European countries’ Industrial Production, Retail Trade and Economic Sentiment indices over the period 01/2000–11/2021
2024
2024
Crisis; Global VAR; Network theory; Systemic risk; Variance decomposition
Celani, Alessandro; Cerchiello, Paola; Pagnottoni, Paolo
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S157230892400007X-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.04 MB
Formato Adobe PDF
2.04 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2167640
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact