Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.

Climate is changing, are European bats too? A multispecies analysis of trends in body size

Martinoli, Adriano;Preatoni, Damiano G.;Spada, Martina;
2024-01-01

Abstract

Animal size, a trait sensitive to spatial and temporal variables, is a key element in ecological and evolutionary dynamics. In the context of climate change, there is evidence that some bat species are increasing their body size via phenotypic responses to higher temperatures at maternity roosts. To test the generality of this response, we conducted a >20-year study examining body size changes in 15 bat species in Italy, analysing data from 4393 individual bats captured since 1995. In addition to examining the temporal effect, we considered the potential influence of sexual dimorphism and, where relevant, included latitude and altitude as potential drivers of body size change. Contrary to initial predictions of a widespread increase in size, our findings challenge this assumption, revealing a nuanced interplay of factors contributing to the complexity of bat body size dynamics. Specifically, only three species (Myotis daubentonii, Nyctalus leisleri, and Pipistrellus pygmaeus) out of the 15 exhibited a discernible increase in body size over the studied period, prompting a reassessment of bats as reliable indicators of climate change based on alterations in body size. Our investigation into influencing factors highlighted the significance of temperature-related variables, with latitude and altitude emerging as crucial drivers. In some cases, this mirrored patterns consistent with Bergmann's rule, revealing larger bats recorded at progressively higher latitudes (Plecotus auritus, Myotis mystacinus, and Miniopterus schreibersii) or altitudes (Pipistrellus kuhlii). We also observed a clear sexual dimorphism effect in most species, with females consistently larger than males. The observed increase in size over time in three species suggests the occurrence of phenotypic plasticity, raising questions about potential long-term selective pressures on larger individuals. The unresolved question of whether temperature-related changes in body size reflect microevolutionary processes or phenotypic plastic responses adds further complexity to our understanding of body size patterns in bats over time and space.
2024
2024
Bergmann's rule; Chiroptera; altitude; climate change; latitude
Russo, Danilo; Jones, Gareth; Martinoli, Adriano; Preatoni, Damiano G.; Spada, Martina; Pereswiet‐soltan, Andrea; Cistrone, Luca
File in questo prodotto:
File Dimensione Formato  
Ecology and Evolution - 2024 - Russo - Climate is changing are European bats too A multispecies analysis of trends in.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.14 MB
Formato Adobe PDF
1.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2167685
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact