We address metrological problems where the parameter of interest is encoded in the internal degree of freedom of a discrete-time quantum walker, and provide evidence that coin dimensionality is a potential resource to enhance precision. In particular, we consider estimation problems where the coin parameter governs rotations around a given axis and show that the corresponding quantum Fisher information (QFI) may increase with the dimension of the coin. We determine the optimal initial state of the walker to maximize the QFI and discuss whether, and to what extent, precision enhancement may be achieved by measuring only the position of the walker. Finally, we consider Grover-like encoding of the parameter and compare results with those obtained from rotation encoding.

Coin dimensionality as a resource in quantum metrology involving discrete-time quantum walks

Razzoli, Luca
Secondo
;
2024-01-01

Abstract

We address metrological problems where the parameter of interest is encoded in the internal degree of freedom of a discrete-time quantum walker, and provide evidence that coin dimensionality is a potential resource to enhance precision. In particular, we consider estimation problems where the coin parameter governs rotations around a given axis and show that the corresponding quantum Fisher information (QFI) may increase with the dimension of the coin. We determine the optimal initial state of the walker to maximize the QFI and discuss whether, and to what extent, precision enhancement may be achieved by measuring only the position of the walker. Finally, we consider Grover-like encoding of the parameter and compare results with those obtained from rotation encoding.
2024
2024
Cavazzoni, Simone; Razzoli, Luca; Ragazzi, Giovanni; Bordone, Paolo; Paris, Matteo G. A.
File in questo prodotto:
File Dimensione Formato  
PhysRevA.109.022432.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 808.1 kB
Formato Adobe PDF
808.1 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2168331
 Attenzione

L'Ateneo sottopone a validazione solo i file PDF allegati

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact