Scanning electron microscopy (SEM) is a precious tool in materials science and morphology sciences, enabling detailed examination of materials at the nanoscale. However, precise and accurate sample repositioning during different observation sessions remains a significant challenge, impacting the quality and repeatability of SEM analyses. This study aimed to develop and evaluate a LEGO (R)-based sample positioning system for SEM analysis. The system was designed to consistently identify and align features across multiple repositioning cycles, maintain accurate positioning along the z-axis, minimize distortion, and provide repeatable and reliable results. The results indicated a high degree of precision and accuracy in the repositioning process, as evidenced by the minimal displacements, deviations in scaling and shearing, and the highly significant results (p < 0.001) obtained from the analysis of absolute translations and rotations. Moreover, the analyses were consistently replicated across six repetitions, underscoring the reliability of the observed results. While the findings suggest that the LEGO-based sample positioning system is promising for enhancing SEM analyses' quality and repeatability, further studies are needed to optimize the system's design and evaluate its performance in different SEM applications. Ultimately, this study contributes to the ongoing efforts to develop cost-effective, customizable, and accurate solutions for sample positioning in SEM, contributing to the advancement of materials science research and all SEM analysis requiring overtime observations of the same sample.

Enhancing SEM positioning precision with a LEGO®-based sample fitting system

Zecca, Piero Antonio
Conceptualization
;
Brambilla, Andrea
Data Curation
;
Reguzzoni, Marcella
Writing – Original Draft Preparation
;
Protasoni, Marina
Visualization
;
Raspanti, Mario
Supervision
2023-01-01

Abstract

Scanning electron microscopy (SEM) is a precious tool in materials science and morphology sciences, enabling detailed examination of materials at the nanoscale. However, precise and accurate sample repositioning during different observation sessions remains a significant challenge, impacting the quality and repeatability of SEM analyses. This study aimed to develop and evaluate a LEGO (R)-based sample positioning system for SEM analysis. The system was designed to consistently identify and align features across multiple repositioning cycles, maintain accurate positioning along the z-axis, minimize distortion, and provide repeatable and reliable results. The results indicated a high degree of precision and accuracy in the repositioning process, as evidenced by the minimal displacements, deviations in scaling and shearing, and the highly significant results (p < 0.001) obtained from the analysis of absolute translations and rotations. Moreover, the analyses were consistently replicated across six repetitions, underscoring the reliability of the observed results. While the findings suggest that the LEGO-based sample positioning system is promising for enhancing SEM analyses' quality and repeatability, further studies are needed to optimize the system's design and evaluate its performance in different SEM applications. Ultimately, this study contributes to the ongoing efforts to develop cost-effective, customizable, and accurate solutions for sample positioning in SEM, contributing to the advancement of materials science research and all SEM analysis requiring overtime observations of the same sample.
2023
feature registration process; mechanical tolerance evaluation; positioning system; sample repositioning precision; scanning electron microscopy (SEM)
Zecca, Piero Antonio; Brambilla, Andrea; Reguzzoni, Marcella; Protasoni, Marina; Raspanti, Mario
File in questo prodotto:
File Dimensione Formato  
Microscopy Res Technique - 2023 - Zecca - Enhancing SEM positioning precision with a LEGO ‐based sample fitting system.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.59 MB
Formato Adobe PDF
3.59 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11383/2168571
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact